精英家教网 > 高中数学 > 题目详情
8.已知a,b为正数,a+2b=6,则$\sqrt{2a+b}$+$\sqrt{a+5b}$的最大值为(  )
A.6B.4C.3D.$\sqrt{3}$

分析 根据基本不等式的性质先求出$\sqrt{2a+b}$$\sqrt{a+5b}$的最大值,再求出${(\sqrt{2a+b}+\sqrt{a+5b})}^{2}$的值,从而得到答案.

解答 解:∵a,b为正数,a+2b=6,
∴$\sqrt{2a+b}$•$\sqrt{a+5b}$≤$\frac{2a+b+a+5b}{2}$=$\frac{3(a+2b)}{2}$=9,
当且仅当2a+b=a+5b即a=4,b=1时成立,
而${(\sqrt{2a+b}+\sqrt{a+5b})}^{2}$
=2a+b+a+5b+2$\sqrt{2a+b}$•$\sqrt{a+5b}$
=3(a+2b)+2$\sqrt{2a+b}$$\sqrt{a+5b}$
≤18+18
=36,
∴$\sqrt{2a+b}$+$\sqrt{a+5b}$≤6,
故选:A.

点评 本题考查了基本不等式的性质,考查转化思想,将$\sqrt{2a+b}$+$\sqrt{a+5b}$平方,并求出$\sqrt{2a+b}$$\sqrt{a+5b}$的最大值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某工厂的生产总值月均增长率为p,则年增长率为(  )
A.pB.12pC.$\frac{{(1+p)}^{12}-12p-1}{12p}$D.(1+p)12-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知抛物线C1:y2=4x和C2:x2=2py(p>0)的焦点分别为F1,F2,点P(-1,-1),且F1F2⊥OP(O为坐标原点).
(I)求抛物线C2的方程;
(II)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从盛装20升纯酒精的容器里倒出1升酒精,然后用水加满,再倒出1升混合溶液,再用水加满,这样继续下去,则酒精的剩余量y关于所倒次数x的函数关系式为y=19×$(\frac{19}{20})^{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知图象连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度0.01)的近似值,应将区间(0,0.1)等分的次数至少为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知梯形ABCD中,BC=6,$\overrightarrow{AB}$+2$\overrightarrow{CD}$=$\overrightarrow{0}$,点P为平面ABCD上的点,且$\frac{\overrightarrow{PA}+\overrightarrow{PB}}{4}$=$\overrightarrow{DP}$,$\overrightarrow{DA}•\overrightarrow{CB}$=|$\overrightarrow{DA}$|•|$\overrightarrow{DP}$|,则点P到直线AD的距离为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于二项式(x-1)2014的展开式有下列命题:
①该二项展开式中系数和是22014
②该二项展开式中第六项为C62014x2008
③该二项展开式中系数最大的项是第1008项;
④当x=2014时,(x-1)2014除以2014的余数是1.
其中正确命题的序号是④.(注:把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)$\frac{lg\sqrt{27}+lg8-3lg\sqrt{10}}{lg1.2}$;
(2)lg22+lg2•lg5+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$,则f(x)的最小正周期为2π,最大值为1,最小值为-$\frac{\sqrt{2}}{2}$,单调减区间为(2kπ+$\frac{π}{2}$,2kπ+$\frac{5π}{4}$),(2kπ+2π,2kπ+$\frac{9π}{4}$)(k∈Z).

查看答案和解析>>

同步练习册答案