精英家教网 > 高中数学 > 题目详情

(13分)已知直角梯形中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F 为AD、CE的中点,现将⊿ADE沿AE折叠,使得DE⊥EC.

(1)求证:FG∥面BCD;(2)求四棱锥D-ABCE的外接球的体积.

 

(1)证明:取中点,连接,,

 ,     

  ,     ……………………6分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)求证:FG∥面BCD.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使DE⊥EC.
(1)求证:BC⊥平面CDE;
(2)求证:FG∥平面BCD;
(3)求四棱锥D-ABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G,F分别为AD,CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(Ⅰ)求证:BC⊥平面CDE;
(Ⅱ)求证:FG∥平面BCD;
(Ⅲ)在线段AE上找一点R,使得面BDR⊥面DCB,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=2,AD=3,CD=1,点E、F分别在AD、BC上,满足AE=
1
3
AD,BF=
1
3
BC
.现将此梯形沿EF折叠成如图所示图形,且使AD=
3

(1)求证:AE⊥平面ABCD;
(2)求二面角D-CE-A的大小.

查看答案和解析>>

同步练习册答案