精英家教网 > 高中数学 > 题目详情
设x1和x2是方程x2+(t-3)x+ (t2-24)=0的两个实根,定义函数f(t)=logm(x12+x22)(m>1),则函数y=f(t)的解析式为(    )

A.f(t)=-t2-6t+57,t∈[-7,5]

B.f(t)=logm(-t2-6t+57),t∈[-7,5]

C.f(t)=3t2-6t-39,t∈[-5,7]

D.f(t)=logm(3t2-6t-39),t∈[-5,7]

思路解析:求函数y=f(t)的解析式,关键是把函数f(t)=logm(x12+x22)中的x12+x22用含有t的代数式表示,根据题意想到用韦达定理便可解决.

    依题意得x1+x2=3-t,x1x2=t2-24,x12+x22=(x1+x2)2-2x1x2=(3-t)2-2(t2-24)=-t2-6t+57.

∴f(t)=logm(x12+x22)=logm(-t2-6t+57).∵方程x2+(t-3)x+(t2-24)=0有两个实数根,∴Δ=(t-3)2-4(t2-24)≥0,解得t∈[-7,5].因此函数y=f(t)的解析式为f(t)=logm(-t2-6t+57),定义域为t∈[-7,5].因此,选B.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若m∈R,命题p:设x1和x2是方程x2-ax-3=0的两个实根,不等m2-2m-4≥|x1-x2|对任意实数a∈[-2,2]恒成立命题q:“4x+m<0”是“x2-x-2>0”的充分不必要条件.求使p且¬q为真命题的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1和x2是方程x2+(t-3)x+(t2-24)=0的两个实根,定义函数f(t)=logm(x12+x22)(m>1),求函数y=f(t)的单调区间,并说明理由.

思路点拨:要想求函数y=f(t)的单调区间,首先要求函数y=f(t)的解析式及定义域.如果在整个定义域内函数不是单调的,那就要把定义域分成几个函数具有单调性的区间段,从而确定单调区间.

查看答案和解析>>

科目:高中数学 来源:江苏期末题 题型:解答题

若m∈R,命题p:设x1和x2是方程x2﹣ax﹣3=0的两个实根,不等m2﹣2m﹣4≥|x1﹣x2|对任意实数a∈[﹣2,2]恒成立命题q:“4x+m<0”是“x2﹣x﹣2>0”的充分不必要条件.求使p且¬q为真命题的m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市如皋中学高二(上)质量检测数学试卷(解析版) 题型:解答题

若m∈R,命题p:设x1和x2是方程x2-ax-3=0的两个实根,不等m2-2m-4≥|x1-x2|对任意实数a∈[-2,2]恒成立命题q:“4x+m<0”是“x2-x-2>0”的充分不必要条件.求使p且¬q为真命题的m的取值范围.

查看答案和解析>>

同步练习册答案