【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同
直线
的极坐标方程为
,曲线C的参数方程为
为参数
,设直线l与曲线C交于A,B两点.
写出直线
的普通方程与曲线C的直角坐标方程;
已知点P在曲线C上运动,求点P到直线
距离的最大值.
科目:高中数学 来源: 题型:
【题目】某学校为进行“阳光运动一小时”活动,计划在一块直角三角形
的空地上修建一个占地面积为
(平方米)的矩形
健身场地。如图,点
在
上,点
在
上,且
点在斜边
上,已知
米,
米,
,设矩形
健身场地每平方米的造价为
元,再把矩形
以外(阴影部分)铺上草坪,每平方米的造价为
元(
为正的常数).
![]()
(1)试用
表示
,并指出如何设计矩形的长和宽,才能使得矩形的面积最大,且求出
的最大值;
(2)求总造价
关于面积
的函数
,说明如何选取
,使总造价
最低(不要求求出最低造价).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(Ⅰ)求所取3张卡片上的数字完全相同的概率;
(Ⅱ)
表示所取3张卡片上的数字的中位数,求
的分布列与数学期望.
(注:若三个数
满足
,则称
为这三个数的中位数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价
(元/件)与每天销售量
(件)之间满足如图所示的关系.
![]()
(1)求出
与
之间的函数关系式;
(2)写出每天的利润
与销售单价
之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
,
,
是
中点(如图1).将
沿
折起到图2中
的位置,得到四棱锥
.
![]()
![]()
(1)将
沿
折起的过程中,
平面
是否成立?并证明你的结论;
(2)若
,过
的平面交
于点
,且
为
的中点,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)求证:函数f(x)-g(x)必有零点;
(2)设函数G(x)=f(x)-g(x)-1
①若函数G(x)有两相异零点且
在
上是减函数,求实数m的取值范围。
②是否存在整数a,b使得
的解集恰好为
若存在,求出a,b的值,若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com