精英家教网 > 高中数学 > 题目详情
(2013•青浦区一模)已知复数z0=1+2i在复平面上对应点为P0,则P0关于直线l:|z-2-2i|=|z|的对称点的复数表示是(  )
分析:求出直线l的方程,求出点(1,2)关于l的对称点,则P0关于直线l:|z-2-2i|=|z|的对称点的复数表示可求.
解答:解:设z=x+yi(x,y∈R),代入:|z-2-2i|=|z|,得|(x-2)+(y-2)i|=|x+yi|,
(x-2)2+(y-2)2
=
x2+y2
,整理得,x+y=2.
而复数z0=1+2i在复平面上对应点为P0(1,2),设其关于x+y=2的对称点为(m,n),
m+1
2
+
n+2
2
=2
n-2
m-1
=1
,解得
m=0
n=1

所以P0关于直线l:|z-2-2i|=|z|的对称点为(0,1).
该点对应的复数是i.
故选B.
点评:本题考查了复数的代数表示法及其几何意义,考查了点关于直线的对称点的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青浦区一模)如果执行如图的框图,输入N=5,则输出的数等于
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的最小正周期;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(x)≤f(
A
2
)
对所有的x∈R恒成立,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)已知集合A={x|x≤2},B={x|x≥a},且A∪B=R,则实数a的取值范围是
a≤2
a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)若
.
135
a2b2c2
246
.
=a2A2+b2B2+c2C2,则C2化简后的最后结果等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)(文)已知正三棱柱的底面正三角形边长为2,侧棱长为3,则它的体积V=
3
3
3
3

查看答案和解析>>

同步练习册答案