精英家教网 > 高中数学 > 题目详情
函数y=3sin(ωx+
π
4
)(ω>0)
的周期为2,则其单调增区间为
[2k-
3
4
,2k+
1
4
](k∈Z)
[2k-
3
4
,2k+
1
4
](k∈Z)
分析:根据函数的周期为2,根据周期公式列出关于ω的方程,求出方程的解得到ω的值,确定出函数解析式,根据正弦函数图象的单调递增区间列出关于x的不等式,求出不等式的解集即可得到函数的单调递增区间.
解答:解:∵函数y=3sin(ωx+
π
4
)(ω>0)
的周期为2,
ω
=2,解得ω=π,
y=3sin(πx+
π
4
)

由正弦函数的单调递增区间为[2kπ-
π
2
,2kπ+
π
2
],(k∈Z),
得到2kπ-
π
2
≤πx+
π
4
≤2kπ+
π
2
,(k∈Z),
解得:2k-
3
4
≤x≤2k+
1
4
,(k∈Z),
则函数的单调递增区间为:[2k-
3
4
,2k+
1
4
](k∈Z)

故答案为:[2k-
3
4
,2k+
1
4
](k∈Z)
点评:此题考查了三角函数的周期性及其求法,以及正弦函数的单调性,熟练掌握三角函数的周期公式及正弦函数的单调性是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=3sin(2x+
π
6
)的图象向右平移m(m>0)个单位后,得到的图象关于y轴对称,则m的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3
sin(
π
3
-2x)-cos2x
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sin(2x+
π
2
)
图象的一条对称轴方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题正确的是
 

①把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位,得到y=3sin2x的图象;
②一平面内两条直线的方程分别是f1(x,y)=0,f2(x,y)=0,它们的交点是P(x0,y0),则方程f1(x,y)+f2(x,y)=0表示的曲线经过点P;
③由“若ab=ac(a≠0,a,b,c,∈R),则b=c”.类比“若
a
b
=
a
c
(
a
0
a
b
c
为三个向量),则
b
=
c

④若等差数列{an}前n项和为sn,则三点(10,
s10
10
)
,(100,
s100
100
),(110,
s110
110
)共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(2x+
π4
)

(1)求该函数最小正周期和单调递增区间;
(2)求该函数的最小值,并给出此时x的取值集合.

查看答案和解析>>

同步练习册答案