精英家教网 > 高中数学 > 题目详情
函数y=3sin(2x+
π
2
)
图象的一条对称轴方程是(  )
分析:利用诱导公式化简函数解析式,令2x=k π,k∈z,解出x=
2
,k∈z,判断选项中满足对称轴方程的选项.
解答:解:函数y=3sin(2x+
π
2
)
=3cos2x
令2x=kπ,k∈z,可得x=
2
,k∈z,
所以函数y=3sin(2x+
π
2
)
图象的对称轴方程是x=
2
,k∈z,
故选B.
点评:本题考查诱导公式,余弦函数的对称性,过图象的最值点且垂直于x轴的直线都是余弦函数的对称轴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=3sin(
1
2
x-
π
4
).
(1)用“五点法”作函数的图象;
(2)求此函数的最小正周期、对称轴、对称中心、单调递增区间.
(3)说出此图象是由y=sinx的图象经过怎样的变化得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=3sin(2x+φ)的图象关于点(
3
,0)成中心对称,那么|φ|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=Asin(ωx+φ)(A>0,ω>0)的周期为1,最大值与最小值的差是3,且函数的图象过点(
1
8
3
4
)
,则函数表达式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题正确的是
(1)(2)(3)
(1)(2)(3)

(1)把函数y=3sin(2x+
π
3
)的图象向右平移
π
6
个单位得到y=3sin2x的图象.
(2)若等差数列的前n项和为Sn则三点((10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线
(3)若f(x)=cos4x-sin4x则f′(
π
12
)=-1

(4)若三次函数f(x)=ax3+bx2+cx+d则“a+b+c=0”是f(x)有极值点的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3sin(2x+
π
3
).
(1)用“五点法”画函数y=3sin(2x+
π
3
),x∈[-
π
6
6
]的图象.(只需列表即可,不用描点连线)
(2)求函数f(x)=3sin(2x+
π
3
)在x∈[-π,π]的单调递减区间.

查看答案和解析>>

同步练习册答案