精英家教网 > 高中数学 > 题目详情
已知y=Asin(ωx+φ)(A>0,ω>0)的周期为1,最大值与最小值的差是3,且函数的图象过点(
1
8
3
4
)
,则函数表达式为(  )
分析:通过周期求出ω,利用最值求出振幅,结合选项,即可判断正确结果.
解答:解:y=Asin(ωx+φ)(A>0,ω>0)的周期为1,所以ω=
T
=
1
=2π

最大值与最小值的差是3,所以A=
3
2
,考察选项,正确选项为D,且函数的图象过点(
1
8
3
4
)

故选D.
点评:本题考查函数解析式的确定,注意已知条件与选项相结合能够快速解答选择题,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=Asin(ωx+φ),(A>0,ω>0)的图象过点P(
π
12
,0)图象上与点P最近的一个顶点是Q(
π
3
,5).
(1)求函数的解析式;
(2)指出函数的增区间;
(3)求使y≤0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知y=Asin(ωx+?)的最大值为1,在区间[
π
6
3
]
上,函数值从1减小到-1,函数图象(如图)与y轴的交点P坐标是(  )
A、(0,
1
2
)
B、(0,
2
2
)
C、(0,
3
2
)
D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的图象过点P(
π
12
,0)图象上与点P最近的一个顶点是Q(
π
3
,5).
(1)求函数的解析式;
(2)求使y≤0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=Asin(ωx+φ),(A>0,ω>0)的图象过点P(
π
12
,0),图象上与点P最近的一个顶点是Q(
π
3
,5).
(1)求函数的解析式;并用“五点法”画简图;
(2)指出函数的增区间;
(3)求使y≤0的x的取值范围.

查看答案和解析>>

同步练习册答案