精英家教网 > 高中数学 > 题目详情
如图,在四面体PABC中,PA、PB、PC两两垂直,∠PBA=45°,∠PBC=60°,M为AB的中点.

(1)求BC与平面PAB所成的角;

(2)求PC与平面ABC所成角的正弦值.

解析:(1)PC⊥面PAB,故BC与面PAB所成角等于∠CBP.即60°.

(2)∠PBA=45°,∠APB=90°,

∴△APB为等腰Rt△,M为AB中点.

∴PM⊥AB.PC⊥AB.

∴AB⊥面PMC.

面ABC⊥面PMC.∠PCM即为PC与面ABC所成角.

△PCM中,∠CPM=90°.sinPCM=.设PB=a则PM=a,PC=a,CM=

a.

∴sinPCM=.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA、AC、CB、BP的中点.
(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=
2
,求四面体PABC的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省高三上学期期中考试文科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA,AC、CB、BP的中点.

(1)求证:D、E、F、G四点共面;

(2)求证:PC⊥AB;

(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省江门市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA、AC、CB、BP的中点.
(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.

查看答案和解析>>

科目:高中数学 来源:2012年广东省广州市高考数学一模调研交流试卷(文科)(解析版) 题型:解答题

如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA、AC、CB、BP的中点.
(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.

查看答案和解析>>

同步练习册答案