精英家教网 > 高中数学 > 题目详情

定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1-a)+f(1-3a)<0,求实数a的取值范围.

答案:
解析:

  解:因为f(x)的定义域为(-1,1),所以解得0<a<.①

  原不等式f(1-a)+f(1-3a)<0化为f(1-3a)<-f(1-a),

  因为f(x)是奇函数,所以-f(1-a)=f(a-1),所以原不等式化为f(1-3a)<f(a-1),

  因为f(x)是减函数,所以1-3a>a-1,即a<.②

  由①和②得实数a的取值范围为(0,).

  点评:(1)学生容易忘记定义域的限制,因此要重视定义域在解题中的作用.

  (2)解关于抽象函数的函数方程或函数不等式,基本思路是依据函数的单调性脱去“f”,要注意函数单调性定义与奇偶性定义的正确运用.

  若函数f(x)在区间A上递增,且f(x1)<f(x2),则

  若函数f(x)在区间A上递减,且f(x1)<f(x2),则


提示:

本题所给函数为抽象函数,没有具体的函数解析式,要求实数a的取值范围,关键是脱去“f”,因此要通过讨论,在f(x)的单调区间上,利用函数的单调性使问题获得解决.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表达式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表达式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,
(Ⅰ)用定义证明:f(x)在[-1,1]上是增函数;
(Ⅱ)解不等式:
(Ⅲ)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省宣城市泾县中学高一(上)12月段考数学试卷(解析版) 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案