精英家教网 > 高中数学 > 题目详情
(2010•天津模拟)某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.
分析:(Ⅰ)甲恰好射击两次说明第一次射中,第二次未射中,设选手甲第i次击中目标的事件为Ai(i=1,2,3),则P(Ai)=0.8,P(
.
Ai
)=0.2
,而Ai与Aj(i,j=1,2,3,i≠j)相互独立,从而求出所求;
(II)ξ可能取的值为0,3,5,6,然后求出相应的概率,得到ξ的分布列,最后根据离散型随机变量的期望公式解之即可.
解答:解:(Ⅰ)设选手甲第i次击中目标的事件为Ai(i=1,2,3),
P(Ai)=0.8,P(
.
Ai
)=0.2

依题可知:Ai与Aj(i,j=1,2,3,i≠j)相互独立
所求为:P(A1
.
A2
)=P(A1)P(
.
A2
)=0.8×0.2=0.16
…(5分)
(Ⅱ)ξ可能取的值为0,3,5,6.           …(6分)
ξ的分布列为:
ξ 0 3 5 6
P 0.2 0.16 0.128 0.512
…(10分)(表中的每一个概率值各占1分)
∴Eξ=0×0.2+3×0.16+5×0.128+6×0.512=4.192.…(12分)
点评:本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望和分布列,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•天津模拟)给出下列四个命题:
①已知a=
π
0
sinxdx,
(
3
,a)
到直线
3
x-y+1=0
的距离为1;
②若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
③m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④在极坐标系中,点P(2,
π
3
)
到直线ρsin(θ-
π
6
)=3
的距离是2.
其中真命题是
①③④
①③④
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是
2(π+
3
2(π+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)已知a∈R,且
-a+i
1-i
为纯虚数,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如果圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为
2
,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)正项等比数列{an}满足a2a4=1,S3=13,bn=log3an,则数列{bn}的前10项和是(  )

查看答案和解析>>

同步练习册答案