精英家教网 > 高中数学 > 题目详情
在三棱锥中,是边长为的正三角形,平面平面分别为的中点,
(1)证明:
(2)求二面角的大小;
(3)求点到平面的距离.
arctan2
.解:(Ⅰ)取AC中点D,连结SD、DB.      
∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB平面SDB,
∴AC⊥SB.               
(Ⅱ)∵AC⊥平面SDB,AC平面ABC,∴平面SDB⊥平面ABC.
过N作NE⊥BD于E,NE⊥平面ABC,
过E作EF⊥CM于F,连结NF,
则NF⊥CM.
∴∠NFE为二面角N-CM-B的平面角.
∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.
又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=SD===,且ED=EB.
在正△ABC中,由平几知识可求得EF=MB=,在Rt△NEF中,tan∠NFE==2,∴二面角N—CM—B的大小是arctan2
(Ⅲ)在Rt△NEF中,NF==
∴S△CMN=CM·NF=,S△CMB=BM·CM=2.
设点B到平面CMN的距离为h,
∵VB-CMN=VN-CMB,NE⊥平面CMB,∴S△CMN·h=S△CMB·NE,
∴h==.即点B到平面CMN的距离为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,四棱柱ABCD—ABCD中,AD平面ABCD,底面ABCD是边长为1的正方形,侧棱AA=2.
(1)求证:CD∥平面ABBA
(2)求直线BD与平面ACD所成角的正弦值;
(3)求二面角D—AC一A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,是棱上的动点,中点,
(Ⅰ)求证:平面
(Ⅱ)若二面角的大小是,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是梯形BCAD,∠DAB=90°,ABBB1=4,BC=3,AD=5,AE=3,FG分别为CDC1D1的中点.

(1)求证:EF⊥平面BB1G
(2)求二面角EBB1G的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在直三棱柱中,,直线与平面角;

(1)求证:平面平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在正三棱柱中,分别是的中点,

(Ⅰ)在棱上是否存在点使?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面与底面所成锐二面角的正切值;
(Ⅲ)求点到截面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,
(1)   证明:AD⊥平面PAB
(2)   求异面直线PCAD所成的角的大小;
(3)   求二面角P—BD—A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,的中点,上的一点,

(Ⅰ)证明:为异面直线的公垂线;
(Ⅱ)设异面直线的夹角为45°,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条异面直线,外的一点,则下列命题正确的是( )
A.过A能作一条与都平行的直线B.过A能作一条与都垂直的直线
C.过A能作一个与都平行的平面D.过A能作一个与都垂直的平面

查看答案和解析>>

同步练习册答案