精英家教网 > 高中数学 > 题目详情
设直线ax-y+3=0与圆x2+y2-2x-4y+1=0交于A、B两点,若AB=2
3
,则a的值为(  )
分析:圆方程化为标准方程,找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到已知直线的距离d,根据弦长,利用垂径定理及勾股定理列出关于a的方程,求出方程的解即可得到a的值.
解答:解:圆方程化为(x-1)2+(y-2)2=4,可得圆心(1,2),半径r=2,
∵弦长AB=2
3
,圆心到直线的距离d=
|a-2+3|
a2+1

∴2
r2-d2
=2
3
,即4-
(a+1)2
a2+1
=3,
解得:a=0,
故选B
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2
3
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)直线经过点P(3,2),且在两坐标轴上的截距相等,求直线方程;
(2)设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2
3
,求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2
3
,则a=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(14)设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2,则a=_______.

查看答案和解析>>

同步练习册答案