(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
(1),,.
(2)的取值范围是.
(3)当且仅当, 时,数列中的成等比数列.
【解析】本试题主要是考查了数列通项公式与前n项和之间的关系的运用以及分类讨论思想求解最值。
(1)利用 an2=S2n-1,n取1或2,可求数列的首项与公差,从人体可得数列的通项,进而可求数列的和;
(2)分类讨论,分离参数,求出对应函数的最值,即可求得结论.
(3)根据已知值成等比数列,可知参数m的范围,然后利用m是整数,得到值。
解:(1)(法一)在中,令,,
得 即 ………………………2分
解得,, …………………3分
.
,
. ……………………5分
(法二)是等差数列,
. …………………………2分
由,得 ,
又,,则. …………………3分
(求法同法一)
(2)①当为偶数时,要使不等式恒成立,即需不等式恒成立. …………………………………6分
,等号在时取得.
此时 需满足. …………………………7分
②当为奇数时,要使不等式恒成立,即需不等式恒成立. ……………………………8分
是随的增大而增大, 时取得最小值.
此时 需满足. …………………………9分
综合①、②可得的取值范围是. …………………………10分
(3),
若成等比数列,则,即.11分
(法一)由, 可得,
即, ……………………12分
. ……………………13分
又,且,所以,此时.
因此,当且仅当, 时,数列中的成等比数列.…………14分
(法二)因为,故,即,
,(以下同上).…………………13分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com