精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=g(x)•h(x),其中函数g(x)=ex,h(x)=x2+ax+a.
(1)求函数g(x)在(1,g(1))处的切线方程;
(2)当0<a<2时,求函数f(x)在x∈[-2a,a]上的最大值;
(3)当a=0时,对于给定的正整数k,问函数F(x)=e•f(x)-2k(lnx+1)是否有零点?请说明理由.(参考数据e≈2.718,$\sqrt{e}$≈1.649,e$\sqrt{e}$≈4.482,ln2≈0.693)

分析 (1)求出函数的导数,计算g(1),g′(1),求出切线方程即可;
(2)求出f(x)的导数,通过讨论a的范围,求出f(x)的最大值即可;
(3)问题转化为e•$\frac{{e}^{x}}{x}$>$\frac{2(lnx+1)}{{x}^{3}}$.令p(x)=e•$\frac{{e}^{x}}{x}$,q(x)=$\frac{2(lnx+1)}{{x}^{3}}$,根据函数的单调性判断即可.

解答 解:(1)∵g(x)=ex,∴g′(x)=ex,∴g′(1)=e,
∴函数g(x)在(1,g(1))处的切线方程为y-e=e(x-1),即y=ex;
(2)f(x)=ex(x2+ax+a),f′(x)=(x+2)(x+a)ex=0,可得x=-a或x=-2.
①-2a≥-2,即0<a≤1时,f(x)在[-2a,-a]上递减,在[-a,a]上递增,
∴f(x)max=f(a);
②-2a<-2,即1<a<2时,f(x)在[-2a,-2]上递增,[-2,-a】递减,在[-a,a]上递增,
∴f(x)max=max{f(-2),f(a)}=f(a);
综上所述,f(x)max=f(a)=(2a2+a)ea
(3)k=1,函数F(x)=e•f(x)-2k(lnx+1)无零点,
k≥2,函数F(x)=e•f(x)-2k(lnx+1)有零点.
理由如下:
k=1时,证明ex2ex-2lnx-2>0即可,即证明e•$\frac{{e}^{x}}{x}$>$\frac{2(lnx+1)}{{x}^{3}}$.
令p(x)=e•$\frac{{e}^{x}}{x}$,q(x)=$\frac{2(lnx+1)}{{x}^{3}}$,
而p′(x)=$\frac{{e}^{x+1}(x-1)}{{x}^{2}}$,
令p′(x)>0,解得:x>1,令p′(x)<0,解得:x<1,
∴p(x)min=p(1)=e2
q′(x)=$\frac{-2(2+3lnx)}{{x}^{4}}$,
令q′(x)>0,解得:0<x<${e}^{-\frac{2}{3}}$,
令q′(x)<0,解得:x>${e}^{-\frac{2}{3}}$,
故q(x)max=q(${e}^{-\frac{2}{3}}$)=$\frac{2}{3}$e2
∴e•$\frac{{e}^{x}}{x}$>$\frac{2(lnx+1)}{{x}^{3}}$,
故命题得证.

点评 本题考查了切线方程问题,考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.计算:${(-7.5)^0}+{(\frac{9}{4})^{0.5}}-{(0.5)^{-2}}+lg25+lg4-{log_3}\frac{{\root{4}{27}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,VA=VB=4,AC=BC=2且AC⊥BC,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,长方体ABCD-A1B1C1D1中,AB=12,BC=10,AA1=8,过点A1、D1的平面α与棱AB和CD分别交于点E、F,四边形A1EFD1为正方形.
(1)在图中请画出这个正方形(注意虚实线,不必写作法),并求AE的长;
(2)问平面α右侧部分是什么几何体,并求其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm2),则它的体积为$\frac{4\sqrt{3}}{3}$(单位:cm3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,1).若m实数,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则m=(  )
A.-7B.-6C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程$|x|-2=\sqrt{4-{{({y-2})}^2}}$表示的曲线是(  )
A.一个圆B.半圆C.两个圆D.两个半圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设△ABC的内角A,B,C所对的边长分别为a,b,c,若bcosC+ccosB=2acosA,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:?c>0,y=(5-c)x在R上是增函数,命题q:?x∈R,x2+2x+c>0,若p∧q为假命题,p∨q为真命题,求实数c的取值范围.

查看答案和解析>>

同步练习册答案