精英家教网 > 高中数学 > 题目详情
5.数列{an}满足${a_n}=\frac{2}{{n({n+1})}}$,若前n项和${S_n}>\frac{5}{3}$,则n的最小值是(  )
A.4B.5C.6D.7

分析 通过分离分母可得an=2($\frac{1}{n}$-$\frac{1}{n+1}$),并项累加可得Sn=2-$\frac{2}{n+1}$,进而计算可得结论.

解答 解:∵${a_n}=\frac{2}{{n({n+1})}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2-$\frac{2}{n+1}$,
又∵${S_n}>\frac{5}{3}$,即2-$\frac{2}{n+1}$>$\frac{5}{3}$,
∴n>5,
∴n的最小值是6,
故选:C.

点评 本题考查数列的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.为了研究某灌溉渠道水的流速y与水深x之间的关系,测得一组数据如下表:
水深x(m)1.61.71.81.92.0
流速y(m/s)11.522.53
(1)画出散点图,判断变量y与x是否具有相关关系;
(2)若y与x之间具有线性相关关系,求y对x的回归直线方程; ($\sum_{i=1}^5{x_i^2}=16.3$,$\sum_{i=1}^5{{x_i}{y_i}}=18.5$)
(3)预测水深为1.95m水的流速是多少.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)=x3-3x+1在[-2,2]上的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3+$\frac{4}{3}$
(Ⅰ)求函数f(x)在点P(2,4)处的切线方程;
(Ⅱ)求过点P(2,4)的函数f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=ex-ax2(a∈R),若函数f(x)为R上的单调递增函数,则a的取值范围是$[{0,\frac{e}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列结论中,正确结论的序号是①.
①在犯错误的概率不超过5%的前提下认为“这种血清能起到预防感冒的作用”;
②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;
③这种血清预防感冒的有效率为95%;
④这种血清预防感冒的有效率为5%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个多面体如图所示,四边形ABCD是边长为2的正方形,AB=FB,FB⊥平面ABCD,ED∥FB,且ED=1.
(1)求证:平面ACE⊥平面ACF.
(2)求多面体AED-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:直线AB⊥平面BCC1B1
(2)求异面直线AE与C1F所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平行四边形ABCD中,E为DC边的中点,且$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=b,求$\overrightarrow{BE}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示).

查看答案和解析>>

同步练习册答案