精英家教网 > 高中数学 > 题目详情

已知f(x)=x3+3x2-9x+1,
(1)求f(x)的单调区间和极值.
(2)求f(x)在区间[-4,4]上的最大值与最小值.

解:(1)f′(x)=3x2+6x-9,
由f′(x)>0,得x<-3或x>1,由f′(x)<0,得-3<x<1,
所以f(x)的增区间是(-∞,-3),(1,+∞),减区间是(-3,1).
所以当x=-3时f(x)取得极大值f(-3)=28,当x=1时f(x)取得极小值f(1)=-4.
(2)f(-4)=21,f(4)=77,又由(1)知极大值f(-3)=28,极小值f(1)=-4,
所以f(x)在[-4,4]上的最大值为77,最小值为-4.
分析:(1)求导数f′(x),解不等式f′(x)>0,f′(x)<0,即可得单调区间,由极值定义可求得极值;
(2)求出函数在区间端点处的函数值,与极值作比较,其中最大者为最大值,最小者为最小值;
点评:本题考查利用导数研究函数的单调性、极值与闭区间上的最值问题,准确求导,弄清导数与函数性质间的关系是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案