已知函数
在
处取得极值为![]()
(1)求a、b的值;(2)若
有极大值28,求
在
上的最大值.
:(Ⅰ)
(Ⅱ)![]()
【解析】::(Ⅰ)因
故
由于
在点
处取得极值
故有
即
,化简得
解得![]()
(Ⅱ)由(Ⅰ)知
,![]()
令
,得
当
时,
故
在
上为增函数;
当
时,
故
在
上为减函数
当
时
,故
在
上为增函数。
由此可知
在
处取得极大值
,
在
处取得极小值
由题设条件知
得
此时
,
因此
上
的最小值为![]()
【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数
进行求导,根据
=0,
,求出a,b的值.(1)根据函数
=x3-3ax2+2bx在x=1处有极小值-1先求出函数中的参数a,b的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.
科目:高中数学 来源:2013届度江西南昌二中高二下学期期末理科数学试卷(解析版) 题型:解答题
(本题12分)已知函数
在
处取得极值.
(1) 求
;
(2 )设函数
,如果
在开区间
上存在极小值,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年贵州省毕节市高三上学期第三次月考理科数学试卷 题型:解答题
已知函数
=
在
处取得极值.
(1)求实数
的值;
(2) 若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南省高三第一次月考理科数学试卷 题型:解答题
(本小题满分14分) 已知函数
在
处取得极值。
(Ⅰ)求函数
的解析式;
(Ⅱ)求证:对于区间
上任意两个自变量的值
,都有
;
(Ⅲ)若过点
可作曲线
的三条切线,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西柳铁一中高三第三次月考文科数学试卷 题型:解答题
设函数
为实数。
(Ⅰ)已知函数
在
处取得极值,求
的值;
(Ⅱ)已知不等式
对任意
都成立,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年甘肃省高三第二阶段考试数学理卷 题型:解答题
(12分)已知函数
在
处取得极值.
(Ⅰ)求实数
的值;[来源:学+科+网]
(Ⅱ)若关于
的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com