(本小题满分10分)
已知函数
(1)求函数
的最小正周期T;
(2)当
时,求函数
的最大值和最小值。
解:(1)
……………………3分
∴函数
的最小正周期T=
……………………4分
(2)∵
∴
……………………6分
∴
……………………8分
∴
故
的最大值为,最小值为-
……………………10分
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
(本小题满分12分)
已知
.
(Ⅰ)求
的值; (Ⅱ)求
的值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
向量
,设函数
.
(1)求
的最小正周期与单调递减区间;
(2)在
中,
分别是角
的对边,若
的面积为
,求
的值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本小题满分13分)
已知函数
.
(Ⅰ)求
的最小正周期;
(Ⅱ)设
,求
的值域和单调递增区间.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本题满分12分)
已知向量
函数
(1)求函数
的解析式,并写出函数
图象的对称中心坐标与对称轴方程.
(2)求函数
的单调递增区间;
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本题满分14分)
已知
向量
,设函数
。
(Ⅰ)求
的最小正周期与单调递减区间;
(Ⅱ)在
中,
、
、
分别是角
、
、
的对边,若
的面积为
,求
的值。
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数
.
(1)若
,求
的最大值;
(2)在
中,若
,
,求
的值
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本题14分)
设函数
(1)求函数
的最小正周期和单调递增区间;
(2)当
时,
的最大值为2,求
的值.
查看答案和解析>>