精英家教网 > 高中数学 > 题目详情

已知则∫-aacosxdx=数学公式(a>0),则∫0acosxdx=


  1. A.
    2
  2. B.
    1
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:根据定积分的几何意义知,定积分的值∫-aacosxdx=(a>0)是f(x)=cosx的图象与x轴所围成的平面图形的面积的代数和,结合偶函数的图象的对称性即可解决问题.
解答:原式=∫-a0cosxdxdx+∫0acosxdx.
∵原函数y=cosx为偶函数,∴在y轴两侧的图象对称,
∴对应的面积相等,则∫0acosxdx==
故选D.
点评:本题主要考查定积分以及定积分的几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

写出命题“若ab=0,则a=0”的否命题________.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如果直线α与平面α,β所成的角相等,那么平面α与β的位置关系是


  1. A.
    α∥β
  2. B.
    α不一定平行于β
  3. C.
    α不平行于β
  4. D.
    以上结论都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直线l上一点(-1,-2),倾斜角为α,且tan数学公式=数学公式,则直线l的方程是


  1. A.
    数学公式
  2. B.
    4x-3y-10=0
  3. C.
    4x+3y+10=0
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在锐角△ABC中,下列结论成立的是


  1. A.
    sinA>cosB
  2. B.
    cosA>sinB
  3. C.
    tanA>tanB
  4. D.
    sinA>sinB

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

等差数列{an}中,已知数学公式,an=33,则n为


  1. A.
    48
  2. B.
    49
  3. C.
    50
  4. D.
    51

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列有关命题的说法中错误的是


  1. A.
    若“p或q”为假命题,则p、q均为假命题
  2. B.
    “x=1”是“x≥1”的充分不必要条件
  3. C.
    数学公式”的必要不充分条件是“数学公式
  4. D.
    若命题p:“?实数x使x2≥0”,则命题?p为“对于?x∈R都有x2<0”

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若集合A={a,b,c},B={-1,0,1},由A到B建立映射f,且f(a)+f(b)+f(c)=0,则 符合条件的映射f的个数是


  1. A.
    7
  2. B.
    8
  3. C.
    9
  4. D.
    2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(I)求函数f(x)的单调区间;
(Ⅱ)函数f(x)在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;
(Ⅲ)若任意的x1,x2∈(1,2)且x1≠x2,证明:数学公式.(注:ln2≈0.693)

查看答案和解析>>

同步练习册答案