【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )
A.
B.
C.
D.
【答案】D
【解析】解:三棱锥的三视图均为三角形,四个答案均满足;
且四个三视图均表示一个高为3,底面为两直角边分别为1,2的棱锥
A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥
设A中观察的正方向为标准正方向,以C表示从后面观察该棱锥
B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,
根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥
故选D
【考点精析】掌握由三视图求面积、体积是解答本题的根本,需要知道求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.
科目:高中数学 来源: 题型:
【题目】在自然数列1,2,3,,n中,任取k个元素位置保持不动,将其余n﹣k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为Pn(k).
(1)求P3(1)
(2)求 P4(k);
(3)证明 kPn(k)=n Pn﹣1(k),并求出 kPn(k)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且an2+an=2Sn , n∈N* .
(1)求a1及an;
(2)求满足Sn>210时n的最小值;
(3)令bn=4 ,证明:对一切正整数n,都有 + + ++ < .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠BCD= ,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(﹣1)n﹣1 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),|3x﹣4y+a|+|3x﹣4y﹣9|的取值与x,y无关,则实数a的取值范围是( )
A.a≤﹣4
B.﹣4≤a≤6
C.a≤﹣4或a≥6
D.a≥6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣x2﹣ax.
(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)在R上是增函数,求实数a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(1)求曲线C1上的点到曲线C2距离的最小值;
(2)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2与 交于A,B两点,求|PA|+|PB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com