精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex﹣x2﹣ax.
(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)在R上是增函数,求实数a的最大值.

【答案】解:(Ⅰ)∵f(x)=ex﹣x2﹣ax,∴f′(x)=ex﹣2x﹣a,则f′(0)=1﹣a.

由题意知1﹣a=2,即a=﹣1.

∴f(x)=ex﹣x2+x,则f(0)=1.

于是1=2×0+b,b=1.

(Ⅱ)由题意f′(x)≥0,即ex﹣2x﹣a≥0恒成立,∴a≤ex﹣2x恒成立.

设h(x)=ex﹣2x,则h′(x)=ex﹣2.

∴当x∈(﹣∞,ln2)时,h′(x)<0,h(x)为减函数;

当x∈(ln2,+∞)时,h′(x)>0,h(x)为增函数.

∴h(x)min=h(ln2)=2﹣2ln2.

∴a≤2﹣2ln2,即a的最大值为2﹣2ln2.


【解析】(Ⅰ)求出f′(x)由f′(0)=1﹣a=2,求得a=﹣1.得到f(x)=ex﹣x2+x,再由f(0)=1求得b值;(Ⅱ)由题意f′(x)≥0,即ex﹣2x﹣a≥0恒成立,∴a≤ex﹣2x恒成立.令h(x)=ex﹣2x,利用导数求其最小值得答案.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数b的取值范围是(
A.(﹣∞,
B.(﹣∞,
C.(﹣
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD
(2)求直线BF与平面AFD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是R上的增函数,则a的取值范围是(
A.﹣3≤a<0
B.﹣3≤a≤﹣2
C.a≤﹣2
D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2x﹣ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x∈[1,+∞)时,关于x的不等式 ≤λ(x﹣1)恒成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:参数方程与极坐标系]
以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6

(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.

查看答案和解析>>

同步练习册答案