【题目】已知函数f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数b的取值范围是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
【答案】A
【解析】解:∵f(x)=ex(x﹣b),
∴f′(x)=ex(x﹣b+1),
若存在x∈[ ,2],使得f(x)+xf′(x)>0,
则若存在x∈[ ,2],使得ex(x﹣b)+xex(x﹣b+1)>0,
即存在x∈[ ,2],使得b< 成立,
令g(x)= ,x∈[ ,2],
则g′(x)= >0,
g(x)在[ ,2]递增,
∴g(x)最大值=g(2)= ,
故b< ,
故选:A
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】在自然数列1,2,3,,n中,任取k个元素位置保持不动,将其余n﹣k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为Pn(k).
(1)求P3(1)
(2)求 P4(k);
(3)证明 kPn(k)=n Pn﹣1(k),并求出 kPn(k)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)上点P,其左、右焦点分别为F1 , F2 , △PF1F2的面积的最大值为 ,且满足 =3
(1)求椭圆E的方程;
(2)若A,B,C,D是椭圆上互不重合的四个点,AC与BD相交于F1 , 且 =0,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定:点P(x,y)按向量 平移后的点为Q(x+a,y+b).若函数 的图象按向量 =(j,k)且|j| 平移后的图象对应的函数是 +1.
(1)试求向量 的坐标;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,已知f(2A)+2cos(B+C)=1, ①求角A的大小;
②若a=6,求b+c的取值范围.
另外:最后一小题也可用“余弦定理结合基本不等式”求解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且an2+an=2Sn , n∈N* .
(1)求a1及an;
(2)求满足Sn>210时n的最小值;
(3)令bn=4 ,证明:对一切正整数n,都有 + + ++ < .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣x2﹣ax.
(Ⅰ)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)在R上是增函数,求实数a的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com