精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:x∈R,x2+1>m;命题q:指数函数f(x)=(3﹣m)x是增函数.若“p∧q”为假命题且“p∨q”为真命题,则实数m的取值范围为

【答案】[1,2)
【解析】解:命题p:x∈R,x2+1>m,解得:m<1;
命题q:指数函数f(x)=(3﹣m)x是增函数,
则3﹣m>1,解得:m<2,
若“p∧q”为假命题且“p∨q”为真命题,
则p,q一真一假,
p真q假时: 无解,
p假q真时: ,解得:1≤m<2,
所以答案是:[1,2).
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=|sin(ωx+ )|(ω>1)在区间[π, π]上单调递减,则实数ω的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知﹣1,a1 , a2 , 8成等差数列,﹣1,b1 , b2 , b3 , ﹣4成等比数列,那么 的值为( )
A.﹣5
B.5
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c分别是△ABC的三个内角A、B、C的对边.
(1)若△ABC面积SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”. (I) 已知二次函数f(x)=ax2+2bx﹣3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m﹣1是定义在[﹣1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案