【题目】已知![]()
(I)判断f(x)的奇偶性并证明
(Ⅱ)若a>1,判断f(x)的单调性并用单调性定义证明;
(Ⅲ)若
,求实数x的取值范围
【答案】(I)见解析;(II) 见解析;(III) ![]()
【解析】试题分析:(1)求解
即可.
(2)运用单调性证明则f(x1)-f(x2)=loga
-loga
=loga
.判断符号即可.
(3)根据单调性转化-1<x-3≤
求解.
试题解析:(I)由
得
,∴函数f(x)的定义域为(-1,1) 关于原点对称.
f(x)在(-1,1)上为奇函数,证明如下:
,
∴f(x)为(-1,1)上的奇函数.
(II) 若
,f(x)在(-1,1)上单调递增,证明如下:
设-1<x1<x2<1, ![]()
则f(x1)-f(x2)=loga
-loga
=loga
.
又-1<x1<x2<1,
∴(1+x1)(1-x2)-(1-x1)(1+x2)=2(x1-x2)<0,
即0<(1+x1)(1-x2)<(1-x1)(1+x2),
∴0<
<1,∴loga
<0,
∴f(x1)<f(x2),∴f(x)在(-1,1)上单调递增.
(III)∵f(x)为(-1,1)上的奇函数,
∴f(x-3) ≤-f(-
)=f(
).
若
,f(x)在(-1,1)上单调递增,
∴-1<x-3≤
,得2<x≤
.
若
,f(x)在(-1,1)上单调递减,
∴
≤x-3<1,得
≤x<4.
综上可知,当
时,实数x的取值范围为
;
当
时,实数x的取值范围为![]()
点晴:本题属于对函数单调性应用的考察,若函数
在区间上单调递增,则
时,有
,事实上,若
,则
,这与
矛盾,类似地,若
在区间上单调递减,则当
时有
;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中的易错点是容易忽视定义域(-1,1).
科目:高中数学 来源: 题型:
【题目】2018年1曰8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值
与这种新材料的含量
(单位:克)的关系为:当
时,
是
的二次函数;当
时,
.测得数据如表(部分)
![]()
(1)求
关于
的函数关系式
;
(2)其函数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinx,若存在x1 , x2 , ,xm满足0≤x1<x2<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(xn﹣1)﹣f(xn)|=12,(m≥2,m∈N*),则m的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,某种商品在销售中有如下关系:第
天的销售价格(单位:元/件)为
,第
天的销售量(单位:件)为
(
为常数),且在第20天该商品的销售收入为1200元(
).
(Ⅰ)求
的值,并求第15天该商品的销售收入;
(Ⅱ)求在这30天中,该商品日销售收入
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,有如下结论
①函数f(x)的值域是[-1,1];
②函数f(x)的减区间为[1,3];
③若存在实数x1、x2、x3、x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1+x2<0;
④在③的条件下x3+x4=6;
⑤若方程f(x)=a有3个解,则
<a≤1
其中正确的是
A. ①②③ B. ③④⑤ C. ②③⑤ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集合
由满足以下性质的函数
组成:①
在
上是增函数;②对于任意的
,
.已知函数
,
.
(1)试判断
,
是否属于集合
,并说明理由;
(2)将(1)中你认为属于集合
的函数记为
.
(ⅰ)试用列举法表示集合
;
(ⅱ)若函数
在区间
上的值域为
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,它的一个焦点到短轴顶点的距离为2,动直线l:y=kx+m交椭圆E于A、B两点,设直线OA、OB的斜率都存在,且
.
(1)求椭圆E的方程;
(2)求证:2m2=4k2+3;
(3)求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
,
,…,
分成8组,制成了如图1所示的频率分布直方图.
![]()
(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用
(元)关于月用水量
(吨)的函数关系式;
(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2017年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰直角三角形
中,
,
,
、
分别是
,
上的点,
,
为
的中点,将
沿
折起,得到如图2所示的四棱锥
,其中
.
![]()
(1)证明:
平面
;
(2)求二面角
的平面角的余弦值;
(3)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com