精英家教网 > 高中数学 > 题目详情

给出下列命题:①是函数的一个对称中心;②若是第一象限角,且,则;③函数是偶函数;④定义平面向量之间的一种新运算“”如下:对任意的,若,则;其中正确命题的序号是( ▲ )

(A) ①③④      (B) ①③   (C) ②③④       (D) ①②③

 

【答案】

B

【解析】解:

是函数的一个对称中心;符合是函数为零,成立。

②若是第一象限角,且,则;不成立。

③函数是偶函数;变为,成立。

④定义平面向量之间的一种新运算“”如下:对任意的,若,则;错误,应该是互为相反数。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)幂函数的图象都过点(1,1),(0,0);
(2)幂函数的图象不可能是一条直线;
(3)n=0时,函数y=xn的图象是一条直线;
(4)幂函数y=xn当n>0时,是增函数;
(5)幂函数y=xn当n<0时,在第一象限内函数值随x值的增大而减少.其中正确的命题序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2014届山东省高一上学期第四次月考数学试卷 题型:填空题

给出下列命题:

(1)幂函数的图像都过点;(2)幂函数的图像不可能是一条直线;

(3)时,函数的图像是一条直线;(4)幂函数时,是增函数;

(5)幂函数时,在第一象限内函数值随值的增大而减少。其中正确的命题序号为     

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
(1)幂函数的图象都过点(1,1),(0,0);
(2)幂函数的图象不可能是一条直线;
(3)n=0时,函数y=xn的图象是一条直线;
(4)幂函数y=xn当n>0时,是增函数;
(5)幂函数y=xn当n<0时,在第一象限内函数值随x值的增大而减少.其中正确的命题序号为______.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高一(上)期中数学试卷(解析版) 题型:填空题

给出下列命题:
(1)幂函数的图象都过点(1,1),(0,0);
(2)幂函数的图象不可能是一条直线;
(3)n=0时,函数y=xn的图象是一条直线;
(4)幂函数y=xn当n>0时,是增函数;
(5)幂函数y=xn当n<0时,在第一象限内函数值随x值的增大而减少.其中正确的命题序号为   

查看答案和解析>>

同步练习册答案