精英家教网 > 高中数学 > 题目详情
9.已知椭圆的左、右焦点为F1、F2,若椭圆上存在点P使∠F1PF2=60°,则椭圆的离心率的取值范围为(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.(0,$\frac{\sqrt{3}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

分析 当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值,由此可得结论.

解答 解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,
P对两个焦点的张角∠F1PF2渐渐增大,
当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.
∵存在点P为椭圆上一点,使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤$\sqrt{3}$OF2,即b≤$\sqrt{3}$c,
∴a2-c2≤3c2,可得a2≤4c2
∴$\frac{c}{a}$≥$\frac{1}{2}$,
∵0<e<1,
∴$\frac{1}{2}$≤e<1.
故选C.

点评 本题考查了直角三角形的三角函数和椭圆的简单几何性质等知识点,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知三个数($\frac{1}{2}$)π,log23,log2π,其中最大的数是log2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,已知sin2B+sin2C+sinBsinC=sin2A.
(Ⅰ)求角A的大小;
(Ⅱ)求2$\sqrt{3}$cos2$\frac{C}{2}$-sin($\frac{4π}{3}$-B)的最大值,并求取得最大值时角B、C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$f(x)=\frac{{\sqrt{9-{x^2}}}}{ln(x-1)}$的定义域为(1,2)∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有三个结论:①$\frac{π}{6}$与$\frac{5}{6}$π的正弦线长度相等:②$\frac{π}{6}$与$\frac{7}{6}$π的正弦线长度相等:③$\frac{π}{4}$与$\frac{9}{4}$π的正弦线长度等.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x是实数,[x]表示不超过x的最大整数.若an=[log2n].Sn为数列{an}的前n项和,求${S}_{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在非等腰△ABC中,A,B,C的对边分别是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面积为6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$则不等式xf(x+1)<x2-2的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.y=kx+1在区间(-1,1)上恒为正数,则实数k的范围是[-1,1].

查看答案和解析>>

同步练习册答案