精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,则z=x+2y的最小值为-8.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+2=0}\\{x-y=1}\end{array}\right.$,解得A(-2,-3),
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A时,直线在y轴上的截距最小,z有最小值为-2+2×(-3)=-8.
故答案为:-8.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若关于x的方程lnx+x=a在区间[1,e2]内有唯一实数解,则实数a的取值范围为[1,2+e2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|0≤x≤5}与B={x|x-m<0},若B⊆CUA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2x+a•2-x,其中常数a≠0
(1)当a=1时,f(x)的最小值;
(2)讨论函数的奇偶性,并说明理由;
(3)当a=256时,是否存在实数k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)对任意x∈R恒成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆C1:x2+y2+2x+4y-4=0与圆C2:(x-2)2+(y-2)2=4的位置关系为(  )
A.相交B.内切C.外切D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果直线l1:2x-y+2=0,l2:8x-y-4=0与x轴正半轴,y轴正半轴围成的四边形封闭区域(含边界)中的点,使函数z=abx+y(a>0,b>0)的最大值为8,求a+b的最小值(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=10,若点P为曲线C:$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$(α为参数)上的动点,其中参数α∈[0,2π].
(1)试写出直线l的直角坐标方程及曲线C的普通方程;
(2)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)与函数g(x)=$\frac{2}{1-\sqrt{1-x}}$是相等的函数,则函数f(x)的定义域是(  )
A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}\frac{3}{x-1},x≥2\\|{{2^x}-1}|,x<2\end{array}\right.$,若方程f(x)-a=0有两个不同的实数根,则实数a的取值范围是(  )
A.(0,1)B.(0,2)C.(0,3)D.[1,3)

查看答案和解析>>

同步练习册答案