精英家教网 > 高中数学 > 题目详情
求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P到两焦点距离之和等于10;
(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点(-
3
2
5
2
).
分析:(1)c=4,椭圆上一点P到两焦点距离之和等于2a=10.(2)c=2,P(-
3
2
5
2
)到两焦点距离之和即为2a.
解答:解:(1)椭圆的焦点在横轴上,c=4,且由椭圆的定义 2a=10,a=5,解得b=3,椭圆方程是 
x2
25
+
y2
9
=1

(2)椭圆的焦点在纵轴上,c=2.由椭圆的定义,椭圆上一点P到两焦点距离之和等于2a.∴2a=
(-
3
2
)
2
+(
5
2
+2)
2
+
(-
3
2
)
2
+(
5
2
-2)
2
=2
10
,a=
10
,∴椭圆方程是 
y2
10
+
x2
6
=1
点评:求椭圆的标准方程,先确定标准方程的形式,再根据条件求出 a,b.本题利用椭圆的定义求a较为简便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)焦距是10,且椭圆上一点到两焦点的距离的和为26.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆标准方程.
(1)已知椭圆的焦点x轴上,且a=5,b=3;
(2)已知椭圆的焦点在y轴上,a=4,离心率为
12

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程.
(1)离心率e=
2
3
,短轴长为8
5

(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程;
(1)焦点在x轴上,焦距等于4,并且经过点P(3,-2
6
)

(2)长轴是短轴的3倍,且经过点P(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭圆经过点(5,0);
(2)焦点在y轴上,且经过两个点(0,2)和(1,0).

查看答案和解析>>

同步练习册答案