精英家教网 > 高中数学 > 题目详情

【题目】执行所给的程序框图,则输出的值是(
A.
B.
C.
D.

【答案】C
【解析】解:模拟执行程序,可得:

A=1,i=1,

第1次执行循环体,A= ,i=2

满足条件i≤20,第2次执行循环体,A= ,i=3,

满足条件i≤20,第3次执行循环体,A= ,i=4,

满足条件i≤20,第4次执行循环体,A= ,i=5,

满足条件i≤20,第5次执行循环体,A= ,i=6,

观察规律可知,当i=20时,满足条件i≤20,第20次执行循环体,A= = ,i=21,

此时,不满足条件i≤20,退出循环,输出A的值为

故选:C.

根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体 在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图 如图所示,用一个与该几何体的下底面平行相距为 h(0<h<2) 的平面截该几何体,则截面面积为 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的最大值为2,它的最小正周期为2π. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 有最大值,则实数a的取值范围是(
A.
B.
C.[﹣2,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,M为C上除长轴顶点外的一动点,以M为圆心, 为半径作圆,过原点O作圆M的两条切线,A、B为切点,当M为短轴顶点时∠AOB= . (Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的右焦点为F,过点F作MF的垂线交直线x= a于N点,判断直线MN与椭圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:

尺寸(mm)

38

48

58

68

78

88

质量(g)

16.8

18.8

20.7

22.4

24.0

25.5

对数据作了初步处理,相关统计量的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且2Sn=4an﹣1. (Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=anan+1﹣2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名篮球运动员在7场比赛中的得分情况如茎叶所示, 分别表示甲、乙两人的平均得分,则下列判断正确的是(
A. , 甲比乙得分稳定
B. , 乙比甲得分稳定
C. , 甲比乙得分稳定
D. , 乙比甲得分稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸线 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段 ,该曲线段是函数 的图像,图像的最高点为 .边界的中间部分为长1千米的直线段 ,且 .游乐场的后一部分边界是以 为圆心的一段圆弧

(1)求曲线段 的函数表达式;
(2)曲线段 上的入口 距海岸线 最近距离为1千米,现准备从入口 修一条笔直的景观路到 ,求景观路 长;
(3)如图,在扇形 区域内建一个平行四边形休闲区 ,平行四边形的一边在海岸线 上,一边在半径 上,另外一个顶点P在圆弧 上,且 ,求平行四边形休闲区 面积的最大值及此时 的值.

查看答案和解析>>

同步练习册答案