精英家教网 > 高中数学 > 题目详情
9.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(  )
A.(1,+∞)B.[1,+∞)C.(1,5)∪(5,+∞)D.[1,5)∪(5,+∞)

分析 直线方程与椭圆方程联立化为:(m+5k2)x2+10kx+5-5m=0.根据直线与椭圆恒有两个公共点,可得△>0,m>0,m≠5.解出即可得出.

解答 解:联立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{5}+\frac{{y}^{2}}{m}=1}\end{array}\right.$,化为:(m+5k2)x2+10kx+5-5m=0.
∵直线与椭圆恒有两个公共点,∴△=100k2-4(m+5k2)(5-5m)>0,m>0,m≠5.
化为:m2-(1-5k2)m>0,m>0,m≠5.
∴m>1-5k2,m>0,m≠5,又k∈R,
∴m>1,且m≠5.
∴m的取值范围为(1,5)∪(5,+∞).
故选:C.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交与判别式的关系、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,正八面体P-ABCD-Q由两个棱长都为a的正四棱锥拼接而成.
(Ⅰ)求PQ的长;
(Ⅱ)证明:四边形PAQC是正方形;
(Ⅲ)求三棱锥A-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=2,b=2$\sqrt{3}$,A=$\frac{1}{2}$B,则A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=log2x+1与g(x)=2-x-1在同一平面直角坐标系下的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设P为等边三角形ABC所在平面内的一点,满足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,则$\overrightarrow{PB}$•$\overrightarrow{PC}$=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$A(\frac{1}{4},0)$,动点P到点A的距离比到直线x=-$\frac{5}{4}$的距离少 1;
(1)求点P的轨迹方程;
(2)已知M(4,0),是否存在定直线x=a,以PM为直径的圆与直线x=a的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ln(x2-1)的定义域为(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,1)∪(1,+∞)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={-2,0,1,3},B={-1,1,3}则A∪B元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足$\overrightarrow{AM}$=k$\overrightarrow{A{C}_{1}}$,$\overrightarrow{BN}$=k$\overrightarrow{BC}$(0≤k≤1).
①向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面?
②直线MN是否与平面ABB1A1平行?

查看答案和解析>>

同步练习册答案