精英家教网 > 高中数学 > 题目详情
4.设P为等边三角形ABC所在平面内的一点,满足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,则$\overrightarrow{PB}$•$\overrightarrow{PC}$=(  )
A.4B.3C.2D.1

分析 利用两个向量的数量积的定义,把要求的式子化为2$\overrightarrow{AB}$•$\overrightarrow{AC}$+2${\overrightarrow{AC}}^{2}$,再利用两个向量的数量积的定义,求得要求式子的值.

解答 解:∵P为等边三角形ABC所在平面内的一点,$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,
则$\overrightarrow{PB}$•$\overrightarrow{PC}$=($\overrightarrow{AB}$-$\overrightarrow{AP}$)•($\overrightarrow{AC}$-$\overrightarrow{AP}$)=(-2$\overrightarrow{AC}$)•(-$\overrightarrow{AB}$-$\overrightarrow{AC}$)=2$\overrightarrow{AB}$•$\overrightarrow{AC}$+2${\overrightarrow{AC}}^{2}$=2•1•1•cos60°+2=3,
故选:B.

点评 本题主要考查向量在几何中的应用中的三角形法则,在解决向量问题中,三角形法则和平行四边形法则是很常用的转化方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足条件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,则z=2x+y+3的最大值是(  )
A.3B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.P为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点,F1,F2分别是椭圆的左焦点和右焦点,过P点作PH⊥F1F2于H,若PF1⊥PF2,则|PH|=(  )
A.$\frac{25}{4}$B.$\frac{8}{3}$C.8D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°.
(1)求:|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+3λ$\overrightarrow{b}$)⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1],f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$则函数h(x)=f(x)-g(x)在区间[-4,5]内零点的个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(  )
A.(1,+∞)B.[1,+∞)C.(1,5)∪(5,+∞)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{OA}=\overrightarrow{e_1},\overrightarrow{OB}=\overrightarrow{e_2}$,若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,且$\overrightarrow{AP}=6\overrightarrow{PB}$,则$\overrightarrow{OP}$=(  )
A.$\frac{1}{7}\overrightarrow{e_1}-\frac{6}{7}\overrightarrow{e_2}$B.$\frac{6}{7}\overrightarrow{e_1}-\frac{1}{7}\overrightarrow{e_2}$C.$\frac{1}{7}\overrightarrow{e_1}+\frac{6}{7}\overrightarrow{e_2}$D.$\frac{6}{7}\overrightarrow{e_1}+\frac{1}{7}\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高中男子体育小组的50m赛跑成绩(单位:s)如下:
4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0
设计一个程序从这些成绩中搜索出小于6.8s的成绩.并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,则函数y=f(f(x))-1的零点的个数是(  )
A.3B.4C.5D.无数个

查看答案和解析>>

同步练习册答案