精英家教网 > 高中数学 > 题目详情
19.若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1],f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$则函数h(x)=f(x)-g(x)在区间[-4,5]内零点的个数为(  )
A.6B.7C.8D.9

分析 由函数y=f(x)(x∈R)满足f(x-2)=f(x),可知函数y=f(x)(x∈R)是周期为2的函数,进而根据x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的图象得到交点个数.

解答 解:因为f(x-2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.
因为x∈[-1,1]时,f(x)=1-x2,所以作出它的图象,
利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[-4,5]上的图象,如图所示
再作出函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的图象,
容易得出到交点为7个.
故选:B.

点评 本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,注意掌握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=-f(x),则周期为2a;若f(x+a)=$\frac{1}{f(x)}$,则周期为2a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,点P在侧棱SD上,且SP=3PD.
(1)求证:AC⊥SD;
(2)若$AB=\sqrt{2}$,求三棱锥D-ACP的体积;
(3)侧棱SC上是否存在一点E,使得BE∥平面PAC,若存在,求$\frac{SE}{EC}$的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,则“a>3”是“a2>2a+3”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+lnx+1
(1)讨论函数f(x)的单调性;
(2)若对任意a∈(-2,-1)及x∈[1,2],恒有ma-f(x)>a2成立,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x(百台),其总成本为P(x)(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入Q(x)(万元)满足Q(x)=$\left\{\begin{array}{l}{-0.5{x}^{2}+22x(0≤x≤16)}\\{224(x>16)}\end{array}\right.$,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:
(1)求利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)工厂生产多少百台产品时,可使利润最多?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设P为等边三角形ABC所在平面内的一点,满足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,则$\overrightarrow{PB}$•$\overrightarrow{PC}$=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设x,y∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,y),$\overrightarrow{c}$=(2,-4),且$\overrightarrow{a}$⊥$\overrightarrow{c}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\vec a+\vec b$═(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的一个焦点为(5,0),渐近线方程为$y=±\frac{3}{4}x$,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{16}=1$C.$\frac{x^2}{4}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:已知α是第四象限角,则$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα.

查看答案和解析>>

同步练习册答案