分析 根据题意,由$\overrightarrow{a}$⊥$\overrightarrow{c}$可得2x+1×(-4)=0,解可得x的值,又由$\overrightarrow{b}$∥$\overrightarrow{c}$可得1×(-4)=2y,解可得y的值,即可得向量$\overrightarrow{a}$、$\overrightarrow{b}$的坐标,由向量加法的坐标运算公式,计算可得答案.
解答 解:根据题意,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{c}$=(2,-4),若$\overrightarrow{a}$⊥$\overrightarrow{c}$,则有2x+1×(-4)=0,解可得x=2,
又由$\overrightarrow{b}$=(1,y),$\overrightarrow{c}$=(2,-4),若$\overrightarrow{b}$∥$\overrightarrow{c}$,则有1×(-4)=2y,解可得y=-2,
$\overrightarrow{a}$=(x,1)=(2,1),$\overrightarrow{b}$=(1,y)=(1,-2),
故$\vec a+\vec b$=(3,-1);
故答案为:(3,-1)
点评 本题考查平面向量的坐标运算,关键是掌握平面向量垂直、平行的坐标判断计算方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}\overrightarrow{e_1}-\frac{6}{7}\overrightarrow{e_2}$ | B. | $\frac{6}{7}\overrightarrow{e_1}-\frac{1}{7}\overrightarrow{e_2}$ | C. | $\frac{1}{7}\overrightarrow{e_1}+\frac{6}{7}\overrightarrow{e_2}$ | D. | $\frac{6}{7}\overrightarrow{e_1}+\frac{1}{7}\overrightarrow{e_2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{12}$ | B. | -$\frac{π}{6}$ | C. | 0 | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com