精英家教网 > 高中数学 > 题目详情
17.有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC中,已知$a=\sqrt{3}$,$B=\frac{π}{4}$,$A=\frac{π}{6}$(或$C=\frac{7π}{12}$),求b.”若破损处的条件为三角形的一个内角的大小,且答案提示$b=\sqrt{6}$.试在横线上将条件补充完整.

分析 要把横线处补全,就要把$b=\sqrt{6}$作为已知条件求A和C的值,由a,B和b的值,根据正弦定理求出A,再由三角形的内角和定理求出C的度数即可得解.

解答 解:∵$a=\sqrt{3}$,$B=\frac{π}{4}$,$b=\sqrt{6}$.
∴由正弦定理可得:sinA=$\frac{asinB}{b}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∵$\sqrt{3}<\sqrt{6}$,A<B,
∴解得:A=$\frac{π}{6}$,C=π-A-B=$\frac{7π}{12}$.
∵破损处的条件为三角形的一个内角的大小,故横线上的条件为:$A=\frac{π}{6}$(或$C=\frac{7π}{12}$).
故答案为:$A=\frac{π}{6}$(或$C=\frac{7π}{12}$).

点评 此题考查学生灵活运用正弦定理化简求值,灵活运用三角形内角和定理化简求值,把b的值看做已知条件求A或C的s值是解本题的基本思路,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=2px(p>0)的焦点的一条直线与它交于P,Q两点,过点P和此抛物线顶点的直线与准线交于点M.求证直线MQ平行于此抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.研究某设备的使用年限x与保养和维修费用y之间的关系,测得一组数据如下
年限x(年)23456
保养和维修费用y(万元)33.556.57
由数据可知y与x有明显的线性相关关系,附参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2-n{\overline{x}}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(1)将表中的数据画成散点图:
(2)试预测第7年的设备保养和维修费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=$\frac{2+i}{i^3}$,z的共轭复数是$\overline{z}$,则$\overline{z}$对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,对任意x1,x2∈(0,+∞),且当x1>x2时,f(x1)-ax1>f(x2)-ax2恒成立,则实数a的取值范围是(  )
A.a>-$\frac{1}{2}$B.a<-$\frac{1}{2}$C.a≥-$\frac{1}{2}$D.a≤-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=\frac{{{{(x-1)}^0}}}{{\sqrt{|x|+x}}}$的定义域是(  )
A.(0,+∞)B.(0,1)∪(1,+∞)C.(-∞,0)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l的极坐标方程为ρcosθ-$\sqrt{3}$ρsinθ=5,圆C的参数方程为$\left\{\begin{array}{l}{x=5+2cosα}\\{y=4+2sinα}\end{array}\right.$(α为参数,α∈[0,2π)),则直线l与圆C的位置关系是(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.判断下列函数的奇偶性:
(1)$f(x)=\frac{{{x^2}+1}}{{\sqrt{x+1}}}$;     
(2)f(x)=|x+2|-|x-2|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=lg($\frac{2}{1-x}$-1)的图象关于原点对称.

查看答案和解析>>

同步练习册答案