精英家教网 > 高中数学 > 题目详情
四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°
(Ⅰ)(Ⅱ)证明见解析
(1)正方形ABCD是四棱锥P—ABCD的底面, 其面积为从而只要算出四棱锥的高就行了.
面ABCD,
∴BA是PA在面ABCD上的射影.又DA⊥AB,
∴PA⊥DA,
∴∠PAB是面PAD与面ABCD所成的二面角的平面角,
∠PAB=60°.                
而PB是四棱锥P—ABCD的高,PB=AB·tg60°=a,
.                                                                                       
(2)不论棱锥的高怎样变化,棱锥侧面PAD与PCD恒为全等三角形.
作AE⊥DP,垂足为E,连结EC,则△ADE≌△CDE,
是面PAD与面PCD所成的二面角的平面角.
设AC与DB相交于点O,连结EO,则EO⊥AC,
                                                                     

故平面PAD与平面PCD所成的二面角恒大于90°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,,.
(1)  求三棱锥的体积;
(2)  证明:;
(3)  求异面直线SB和AC所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知直四棱柱ABCDA1B1C1D1
底面是菱形,且∠DAB=60°,AD=AA1F为棱BB1的中点,
M为线段AC1的中点.  (1)求证:直线MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1
(3)求平面AFC1与与平面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥(如图)底面是边长为2的正方形.侧棱底面分别为的中点,
(Ⅰ)求证:平面⊥平面
(Ⅱ)直线与平面所成角的正弦值为,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体,ABCDF中,点O是矩形ABCD的对角线的交点,面ABF是等边三角形,棱EF=
(1)证明EO∥平面ABF;
(2)问为何值时,有OF⊥ABE,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,已知
(1)证明:平面
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。
(Ⅰ)证明:AF⊥平面FD1B1
(Ⅱ)求异面直线EB与O1F所成角的余弦值;               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图3所示,在直三棱柱中,

(Ⅰ)证明:平面
(Ⅱ)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(  )
                      

查看答案和解析>>

同步练习册答案