精英家教网 > 高中数学 > 题目详情
如图3所示,在直三棱柱中,

(Ⅰ)证明:平面
(Ⅱ)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.
(1)见解析(2)中点
(Ⅰ)∵,∴
∵三棱柱为直三棱柱,∴
,∴平面.  ∵平面
,∵,则.       
中,,∴
,∴四边形为正方形.∴.                                 
,∴平面.               
(Ⅱ)当点为棱的中点时,平面.           
证明如下: 如图,取的中点,连
分别为的中点,

平面平面
平面.    
同理可证平面.∵
∴平面平面.∵平面
平面 .      
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.
(Ⅰ)证明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分别为AC、AA1的中点.点F为棱AB上的点.
(Ⅰ)当点F为AB的中点时.
(1)求证:EF⊥AC1
(2)求点B1到平面DEF的距离.
(Ⅱ)若二面角A-DF-E的大小为的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


                                                      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四个命题,其中正确的命题是         (   )
①若直线l //平面,则直线l的垂线必平行平面
②若直线l与平面相交,则有且只有一个平面,经过l与平面垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线都相交且互相平分,则这个四棱柱为平行六面体.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



一个空间几何体的三视图如图所 示,其中分别是五点在直立、侧立、水平三个投影面内的投影,且在主视图中,四边形为正方形且;在左视图中俯视图中
(Ⅰ)根据三视图作出空间几何体的直观图,并标明五点的位置;
(Ⅱ)在空间几何体中,过点作平面的垂线,若垂足H在直线 上,求证:平面⊥平面
(Ⅲ)在(Ⅱ)的条件下,求三棱锥的体积及其外接球的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线l,m与平面α、β、γ满足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有(    )
A.α⊥γ且l⊥mB.α⊥γ且m∥β
C.m∥β且l⊥mD.α∥β且α⊥γ

查看答案和解析>>

同步练习册答案