精英家教网 > 高中数学 > 题目详情
已知△ABC的外接圆的半径为
2
,内角A,B,C的对边分别为a,b,c,又向量
m
=(sinA-sinC,b-a)
n
=(sinA+sinC,
2
4
sinB)
,且
m
n

(I)求角C;
(II)求三角形ABC的面积S的最大值.
分析:(I)由
m
n
,推出
m
n
=0
,利用坐标表示化简,结合余弦定理求角C;
(II)利用(I)中c2=a2+b2-ab,应用正弦定理,和基本不等式,求三角形ABC的面积S的最大值.
解答:解:(Ⅰ)∵
m
n
?
m
n
=0

(sinA-sinC)(sinA+sinC)+
2
4
(b-a)sinB=0

2R=2
2
,由正弦定理得:(
a
2R
)2-(
c
2R
)2+
2
4
b
2R
(b-a)=0

化简得:c2=a2+b2-ab
由余弦定理:c2=a2+b2-2abcosC∴2cosC=1?cosC=
1
2

0<C<π,∴C=
π
3

(Ⅱ)∵a2+b2-ab=c2=(2RsinC)=6
∴6=a2+b2-ab≥2ab-ab=ab(当且仅当a=b时取“=”)
S=
1
2
absinC=
3
4
ab≤
3
2
3

所以,Smax=
3
2
3
,此时,△ABC为正三角形
点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的外接圆的圆心O,BC>CA>AB,则
OA
OB
OA
OC
OB
OC
的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的外接圆半径R为6,面积为S,a、b、c分别是角A、B、C的对边设S=a2-(b-c)2,sinB+sinC=
43

(I)求sinA的值;
(II)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c.向量
m
=(a,4cosB)
n
=(cosA,b)
满足
m
n

(1)求sinA+sinB的取值范围;
(2)若A∈(0,
π
3
)
,且实数x满足abx=a-b,试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的外接圆圆心为O,BC>CA>AB.则(  )
A、
OA
OB
OA
OC
OB
OC
B、
OA
OB
OB
OC
OC
OA
C、
OC
OB
OA
OC
OB
OA
D、
OA
OC
OB
OC
OA
OB

查看答案和解析>>

同步练习册答案