精英家教网 > 高中数学 > 题目详情
直角梯形ABCD如图(1),动点P从B点出发,由B→C→D→A沿边运动,设点P运动的距离为x,ΔABP面积为f(x).若函数y= f(x)的图象如图(2),则ΔABC的面积为   (    )
A.10B.16C.18D.32
B

试题分析:根据图2可知当点P在CD上运动时,△ABP的面积不变,与△ABC面积相等;且不变的面积是在x=4,x=9之间;所以在直角梯形ABCD中BC=4,CD=5,AD=5.过点D作DN⊥AB于点N,则有DN=BC=4,BN=CD=5,在Rt△ADN中,,所以AB=BN+AN=5+3=8,
所以△ABC的面积为,故选B.
点评:要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)某公司生产一种产品每年需投入固定成本为0.5万元,此外每生产100件这种产品还需要增加投入0.25万元.经预测知,当售出这种产品百件时,若,则销售所得的收入为万元:若,则销售收入为万元.
(1)若该公司的这种产品的年产量为百件,请把该公司生产并销售这种产品所得的年利润表示为当年生产量的函数;
(2)当年产量为多少时,当年公司所获利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于的函数,有下列结论:
①、该函数的定义域是;            ②、该函数是奇函数;
③、该函数的最小值为
④、当 时为增函数,当为减函数;
其中,所有正确结论的序号是            。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设函数),
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)宁波市的一家报刊点,从报社买进《宁波日报》的价格是每份0.20元,卖出的价格是每份0.3元,卖不掉的报纸可以以每份0.05元的价格退回报社。在一个月(30天计)里,有20天可以卖出400份,其余10天每天只能卖出250份,但是每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使得每月所获利润最大?并计算他一个月最多可以赚多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知其中为常数,若,则=(  )
A.2B.-6C.-10D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个函数,不在区间[1,2]上单调递减的是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是直角坐标平面上所有点组成的集合,如果由的映射为:
那么点的原象是点        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知映射由右表给出,则      

查看答案和解析>>

同步练习册答案