精英家教网 > 高中数学 > 题目详情
5.已知f(x)=sin2(π+x)-cos(2π-x)+a
(1)求f(x)的值域
(2)若f(x)在(0,$\frac{π}{2}$)内有零点,求a的范围.

分析 (1)化简三角函数式并进行配方,结合正弦函数的有界性求值域;
(2)结合(1)的解析式以及角度范围求出方程$-(cosx+\frac{1}{2})^{2}+a+\frac{5}{4}$=0在(0,$\frac{π}{2}$)有解的关于a 的不等式,解之即可.

解答 解:(1)f(x)=sin2(π+x)-cos(2π-x)+a
=sin2x-cosx+a=-cos2x-cosx+a+1=$-(cosx+\frac{1}{2})^{2}+a+\frac{5}{4}$,x∈R,cosx∈[-1,1],
所以cosx=$-\frac{1}{2}$时,f(x)最大值为$a+\frac{5}{4}$,cosx=1时,f(x)最小值为-1+a;
所以f(x)的值域[-1+a,a+$\frac{5}{4}$];
(2)若f(x)在(0,$\frac{π}{2}$)内有零点,
$-(cosx+\frac{1}{2})^{2}+a+\frac{5}{4}$=0在(0,$\frac{π}{2}$)有解,
又(cosx+$\frac{1}{2}$)2∈($\frac{1}{4},\frac{9}{4}$),
所以$\frac{1}{4}$<a+$\frac{5}{4}$<$\frac{9}{4}$,解得-1<a<1.

点评 本题考查了三角函数的化简、三角函数的有界性以及三角函数的零点;注意角度范围对值域的影响.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的渐近线方程为y=$±\frac{3}{4}x$;离心率为$\frac{5}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在极坐标系中,直线ρ(cosθ+2sinθ)=1与直线ρsinθ=1的夹角大小为arctan$\frac{1}{2}$(结果用反函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的一元二次方程mx2-2mx+1=0一个根大于1,另一个根小于1,则实数m的取值范围是m<0或m>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,则多面体ABC-A1B1C1的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设D为△ABC所在平面内一点,$\overrightarrow{BC}=3\overrightarrow{DC}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面用“三段论”形式写出的演绎推理:因为对数函数y=logax(a>0且a≠1)在(0,+∞)上是增函数,y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函数,该结论显然是错误的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.以上都可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足an+1=$\frac{1}{2}$an+t,a1=$\frac{1}{2}$(t为常数,且t≠$\frac{1}{4}$).
(1)证明:{an-2t}为等比数列;
(2)当t=-$\frac{1}{8}$时,求数列{an}的前几项和最大?
(3)当t=0时,设cn=4an+1,数列{cn}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,已知边长为4的菱形ABCD中,AC∩BD=O,∠ABC=60°.将菱形ABCD沿对角线AC折起得到三棱锥D-ABC,二面角D-AC-B的大小为60°,则直线BC与平面DAB所成角的正弦值为$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

同步练习册答案