精英家教网 > 高中数学 > 题目详情
10.设D为△ABC所在平面内一点,$\overrightarrow{BC}=3\overrightarrow{DC}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$

分析 由题意可得D为BC的三等分点,用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AD}$即可.

解答 解:∵$\overrightarrow{BC}=3\overrightarrow{DC}$,∴D为线段BC靠近C点的三等分点
∴$\overrightarrow{BD}=\frac{2}{3}\overrightarrow{BC}$=$\frac{2}{3}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}$,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}+\overrightarrow{BD}$=$\frac{1}{3}\overrightarrow{AB}$+$\frac{2}{3}\overrightarrow{AC}$.
故选:C.

点评 本题考查了平面向量的基本定理,向量线性运算的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=4,在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.
(1)求证:面FEB⊥面CEB;
(2)若二面角D-AF-C的大小为$\frac{π}{4}$,求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F(-c,0),其上顶点为B(0,b),直线BF与椭圆的交点为A,点A关于x轴的对称点为C
(Ⅰ)若点C的坐标为$(-\frac{3}{2},\frac{{\sqrt{2}}}{2})$,且c=1,求椭圆的方程.
(Ⅱ)设点O为原点,若直线OC恰好平分线段AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一元二次方程x2+(a-1)x+1-a2=0的两根都大于0,则a的取值范围是(  )
A.-1<a<1B.a≤-$\frac{3}{5}$或a≥1C.-1<a≤-$\frac{3}{5}$D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=sin2(π+x)-cos(2π-x)+a
(1)求f(x)的值域
(2)若f(x)在(0,$\frac{π}{2}$)内有零点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为一切奇数都不能被2整除,大前提,2100+1是奇数,小前提,所以2100+1不能被2整除.结论,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,F1,F2分别是椭圆C的左、右焦点,椭圆C的焦点F1到双曲线$\frac{{x}^{2}}{2}$-y2=1渐近线的距离为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AB:y=kx+m(k<0)与椭圆C交于不同的A,B两点,以线段AB为直径的圆经过点F2,且原点O到直线AB的距离为$\frac{2\sqrt{5}}{5}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,试求f(x)的最值,并写出取得最值时自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2cos(x+$\frac{π}{3}$)-1的对称轴为x=kπ-$\frac{π}{3}$,k∈Z,最小值为-3.

查看答案和解析>>

同步练习册答案