2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬F1£¬F2·Ö±ðÊÇÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã£¬ÍÖÔ²CµÄ½¹µãF1µ½Ë«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1½¥½üÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö±ÏßAB£ºy=kx+m£¨k£¼0£©ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄA£¬BÁ½µã£¬ÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¾­¹ýµãF2£¬ÇÒÔ­µãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬ÇóÖ±ÏßABµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄÀëÐÄÂÊÒÔ¼°µãµ½½¥½üÏߵľàÀ뽨Á¢·½³Ì¹ØÏµÇó³öa£¬b¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬×ª»¯ÎªÒ»Ôª¶þ´Î·½³Ì£¬¸ù¾Ý¸ùÓëϵÊýÖ®¼äµÄ¹ØÏµÒÔ¼°Éè¶ø²»ÇóµÄ˼Ïë½øÐÐÇó½â¼´¿É£®

½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡à$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬
¡ßË«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1µÄÒ»Ìõ½¥½üÏß·½³ÌΪx-$\sqrt{2}$y=0£¬
ÍÖÔ²CµÄ×ó½¹µãF1£¨-c£¬0£©£¬
¡ßÍÖÔ²CµÄ½¹µãF1µ½Ë«ÇúÏß$\frac{{x}^{2}}{2}$-y2=1½¥½üÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$£®
¡àd=$\frac{|-c|}{\sqrt{1+2}}=\frac{\sqrt{3}}{3}$=$\frac{c}{\sqrt{3}}$µÃc=1£¬
Ôòa=$\sqrt{2}$£¬b=1£¬
ÔòÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+$y2=1£»
£¨¢ò£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÔ­µãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬
µÃ$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{5}}{5}$£¬
¼´m2=$\frac{4}{5}$£¨1+k2£©£¬¢Ù
½«y=kx+m£¨k£¼0£©´úÈë$\frac{{x}^{2}}{2}+$y2=1£»µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÔòÅбðʽ¡÷=16k2m2-4£¨1+2k2£©£¨2m2-2£©=8£¨2k2-m2+1£©£¾0£¬
¡àx1+x2=-$\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$£¬
¡ßÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¾­¹ýµãF2£¬
¡à$\overrightarrow{A{F}_{2}}•\overrightarrow{B{F}_{2}}$=0£¬
¼´£¨x1-1£©£¨x2-1£©+y1y2=0
¼´£¨x1-1£©£¨x2-1£©+£¨kx1+m£©£¨kx2+m£©=0£¬
¼´£¨1+k2£©x1x2+£¨km-1£©£¨x1+x2£©+m2+1=0£¬
¡à£¨1+k2£©•$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+£¨km-1£©•£¨-$\frac{4km}{1+2{k}^{2}}$£©+m2+1=0£¬
»¯¼òµÃ3m2+4km-1=0  ¢Ú
ÓÉ¢Ù¢ÚµÃ11m4-10m2-1=0£¬µÃm2=1£¬
¡ßk£¼0£¬¡à$\left\{\begin{array}{l}{m=1}\\{k=-\frac{1}{2}}\end{array}\right.$£¬Âú×ãÅбðʽ¡÷=8£¨2k2-m2+1£©£¾0£¬
¡àABµÄ·½³ÌΪy=-$\frac{1}{2}$x+1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ·½³ÌµÄÇó½âÒÔ¼°Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÀûÓ÷½³Ì·¨ÒÔ¼°×ª»¯·¨£¬×ª»¯ÎªÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýÖ®¼äµÄ¹ØÏµ£¬½áºÏÉè¶ø²»ÇóµÄ˼ÏëÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£¬ÔËËãÁ¿½Ï´ó£¬ÓÐÒ»¶¨µÄÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬an+an+1=4n-2£¨n¡Ý2£¬n¡ÊN*£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1+3b2+7b3+¡­+£¨2n-1£©bn=an£¨n¡Ý1£¬n¡ÊN*£©£¬ÇÒÉèSn=b1+b2+¡­+bn£¬ÇóÖ¤£ºSn£¼$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2-2mx+1=0Ò»¸ö¸ù´óÓÚ1£¬ÁíÒ»¸ö¸ùСÓÚ1£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇm£¼0»òm£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèDΪ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬$\overrightarrow{BC}=3\overrightarrow{DC}$£¬Ôò£¨¡¡¡¡£©
A£®$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B£®$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C£®$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D£®$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÃæÓá°Èý¶ÎÂÛ¡±ÐÎʽд³öµÄÑÝÒïÍÆÀí£ºÒòΪ¶ÔÊýº¯Êýy=logax£¨a£¾0ÇÒa¡Ù1£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬y=log${\;}_{\frac{1}{2}}$xÊǶÔÊýº¯Êý£¬ËùÒÔy=log${\;}_{\frac{1}{2}}$xÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬¸Ã½áÂÛÏÔÈ»ÊÇ´íÎóµÄ£¬ÆäÔ­ÒòÊÇ£¨¡¡¡¡£©
A£®´óǰÌá´íÎóB£®Ð¡Ç°Ìá´íÎóC£®ÍÆÀíÐÎʽ´íÎóD£®ÒÔÉ϶¼¿ÉÄÜ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÏÂÁк¯ÊýµÄ·´º¯Êý£®
£¨1£©y=cosx£¬x¡Ê[-$\frac{1}{2}$¦Ð£¬0]£»
£¨2£©y=cosx£¬x¡Ê[-¦Ð£¬0]£»
£¨3£©y=cos£¨2x-$\frac{¦Ð}{3}$£©£¬x¡Ê[$\frac{¦Ð}{4}$£¬$\frac{2¦Ð}{3}$]£»
£¨4£©y=arccos£¨x+1£©£¬x¡Ê[-2£¬0]£»
£¨5£©y=$\frac{¦Ð}{2}$+arccos$\frac{x}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=$\frac{1}{2}$an+t£¬a1=$\frac{1}{2}$£¨tΪ³£Êý£¬ÇÒt¡Ù$\frac{1}{4}$£©£®
£¨1£©Ö¤Ã÷£º{an-2t}ΪµÈ±ÈÊýÁУ»
£¨2£©µ±t=-$\frac{1}{8}$ʱ£¬ÇóÊýÁÐ{an}µÄǰ¼¸ÏîºÍ×î´ó£¿
£¨3£©µ±t=0ʱ£¬Éècn=4an+1£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Èô²»µÈʽ$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=|log3x|£¬Èô´æÔÚÁ½¸ö²»Í¬µÄʵÊýa£¬bÂú×ãf£¨a£©=f£¨b£©£¬Ôòab=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔxµÄ·Ç¸º°ëÖáΪʼ±ß×÷Á½¸öÈñ½Ç¦Á£¬¦Â£¬ËüÃǵÄÖձ߷ֱðÓ뵥λԲ½»ÓÚµãA£¬B£¬ÒÑÖªAµÄºá×ø±êΪ$\frac{\sqrt{5}}{5}$£¬BµÄ×Ý×ø±êΪ$\frac{\sqrt{2}}{10}$£¬Ôò2¦Á+¦Â=$\frac{3¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸