精英家教网 > 高中数学 > 题目详情
7.求下列函数的反函数.
(1)y=cosx,x∈[-$\frac{1}{2}$π,0];
(2)y=cosx,x∈[-π,0];
(3)y=cos(2x-$\frac{π}{3}$),x∈[$\frac{π}{4}$,$\frac{2π}{3}$];
(4)y=arccos(x+1),x∈[-2,0];
(5)y=$\frac{π}{2}$+arccos$\frac{x}{2}$.

分析 用y表示出x,得出其反函数,根据原函数的定义域求出值域,即为反函数的定义域.

解答 解:(1)∵x∈[-$\frac{1}{2}π$,0],∴-x∈[0,$\frac{π}{2}$],y∈[0,1].
又y=cosx=cos(-x),∴-x=arccosy,即x=-arccosy,
∴原函数的反函数为y:=-arccosx,x∈[0,1],
(2))∵x∈[-π,0],∴-x∈[0,π],y∈[-1,1].
又y=cosx=cos(-x),∴-x=arccosy,即x=-arccosy,
∴原函数的反函数为:y=-arccosx,x∈[-1,1],
(3))∵x∈[$\frac{π}{4}$,$\frac{2π}{3}$],∴2x-$\frac{π}{3}$∈[$\frac{π}{6}$,π],y∈[-1,$\frac{\sqrt{3}}{2}$].
又y=cosx(2x-$\frac{π}{3}$),∴2x-$\frac{π}{3}$=arccosy,∴x=$\frac{1}{2}$arccosy+$\frac{π}{6}$,
∴原函数的反函数为:y=$\frac{1}{2}$arccosx+$\frac{π}{6}$,x∈[-1,$\frac{\sqrt{3}}{2}$],
(4)∵x∈[-2,0],∴x+1∈[-1,1],y∈[0,π].
∵y=arccos(x+1),∴x+1=cosy,即x=cosy-1,
∴原函数的反函数为:y=cosx-1,x∈[0,π],
(5)∵y=$\frac{π}{2}$+arccos$\frac{x}{2}$,∴y∈[$\frac{π}{2}$,$\frac{3π}{2}$].
∴y-$\frac{π}{2}$=arccos$\frac{x}{2}$,∴$\frac{x}{2}$=cos(y-$\frac{π}{2}$)=siny,
∴x=2siny,
∴原函数的反函数为:y=2sinx,x∈[$\frac{π}{2}$,$\frac{3π}{2}$].

点评 本题考查了反余弦函数的性质,需要对定义域的范围进行变换.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设计一个计算1×3×5×7×…×199的算法,并写出程序,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一元二次方程x2+(a-1)x+1-a2=0的两根都大于0,则a的取值范围是(  )
A.-1<a<1B.a≤-$\frac{3}{5}$或a≥1C.-1<a≤-$\frac{3}{5}$D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为一切奇数都不能被2整除,大前提,2100+1是奇数,小前提,所以2100+1不能被2整除.结论,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,F1,F2分别是椭圆C的左、右焦点,椭圆C的焦点F1到双曲线$\frac{{x}^{2}}{2}$-y2=1渐近线的距离为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AB:y=kx+m(k<0)与椭圆C交于不同的A,B两点,以线段AB为直径的圆经过点F2,且原点O到直线AB的距离为$\frac{2\sqrt{5}}{5}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若数列{an}中,a1=3,且an+1=an2(n∈N*),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,试求f(x)的最值,并写出取得最值时自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\frac{{{{(1+i)}^2}}}{{{{(1-i)}^3}}}$=(  )
A.-$\frac{1}{2}$-$\frac{i}{2}$B.-$\frac{1}{2}$+$\frac{i}{2}$C.$\frac{1}{2}$-$\frac{i}{2}$D.$\frac{1}{2}$+$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”.则下列有关说法中:
①对于圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y-1)2=1的一个太极函数;
③存在圆O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圆O的一个太极函数;
④直线(m+1)x-(2m+1)y-1=0所对应的函数一定是圆O:(x-2)2+(y-1)2=R2(R>0)的太极函数;
⑤若函数f(x)=kx3-kx(k∈R)是圆O:x2+y2=1的太极函数,则k∈(-2,2).
所有正确的是②④⑤.

查看答案和解析>>

同步练习册答案