分析 (1)通过凑角,把公式化简,从而求单调区间;(2)整体思想求三角函数在闭区间上的最值.
解答 解:(1)由题意知,f(x)=$sin(2x+\frac{π}{3})+\sqrt{3}cos(2x+\frac{π}{3})$=2sin$(2x+\frac{2π}{3})$,
f(x)的最小正周期为T=$\frac{2π}{2}$=π.
当-$\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ,k∈Z$,
所以,f(x)的单增区间为[-$\frac{7π}{12}+kπ,-\frac{π}{12}+kπ]$,(k∈Z).
(2)∵x∈[-$\frac{π}{6}$,$\frac{π}{3}$],所以$\frac{π}{3}≤2x+\frac{2π}{3}≤\frac{4π}{3}$,
当2x+$\frac{2π}{3}$=$\frac{π}{2}$,即x=-$\frac{π}{12}$时,f(x)取得最大值2;
当2x+$\frac{2π}{3}$=$\frac{4π}{3}$,即x=$\frac{π}{3}$时,f(x)取得最小值-$\sqrt{3}$.
点评 本题考查了三角函数的化简及单调区间和最值的求法,运用了整体的思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com