精英家教网 > 高中数学 > 题目详情
8.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},则集合B中的元素个数为(  )
A.9B.6C.4D.3

分析 通过列举可得x,y∈A的数对共9对,再寻找符合题意的(x,y),即为集合B中的元素个数.

解答 解:通过列举,可知x,y∈A的数对共9对,
即(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9种,
∵B={(x,y)|x+y-4>0,x,y∈A},
∴易得(2,3),(3,2),(3,3)满足x+y-4>0,
∴集合B中的元素个数共3个.
故选:D.

点评 列举题目中的几种不同情况,注意做到不重不漏,考查学生的分析能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知一元二次方程x2+(a-1)x+1-a2=0的两根都大于0,则a的取值范围是(  )
A.-1<a<1B.a≤-$\frac{3}{5}$或a≥1C.-1<a≤-$\frac{3}{5}$D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,试求f(x)的最值,并写出取得最值时自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\frac{{{{(1+i)}^2}}}{{{{(1-i)}^3}}}$=(  )
A.-$\frac{1}{2}$-$\frac{i}{2}$B.-$\frac{1}{2}$+$\frac{i}{2}$C.$\frac{1}{2}$-$\frac{i}{2}$D.$\frac{1}{2}$+$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,扇形AOB中,圆心角∠AOB=$\frac{π}{3}$,半径为2,在弧$\widehat{AB}$上有一动点P,过P引平行于OB的直线与OA交于点C,设∠AOP=θ,则△POC面积的最大值为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=cosωx(其中ω>0)的图象向右平移$\frac{π}{3}$个单位,若所得图象与原图象重合,则f($\frac{π}{24}$)不可能等于(  )
A.0B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2cos(x+$\frac{π}{3}$)-1的对称轴为x=kπ-$\frac{π}{3}$,k∈Z,最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”.则下列有关说法中:
①对于圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y-1)2=1的一个太极函数;
③存在圆O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圆O的一个太极函数;
④直线(m+1)x-(2m+1)y-1=0所对应的函数一定是圆O:(x-2)2+(y-1)2=R2(R>0)的太极函数;
⑤若函数f(x)=kx3-kx(k∈R)是圆O:x2+y2=1的太极函数,则k∈(-2,2).
所有正确的是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设命题p:2x2-7x+3≤0,命题q:x2-(2a+1)x+a(a+1)≤0,若命题p是命题q的必要不充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案