精英家教网 > 高中数学 > 题目详情
3.设命题p:2x2-7x+3≤0,命题q:x2-(2a+1)x+a(a+1)≤0,若命题p是命题q的必要不充分条件,求a的取值范围.

分析 利用不等式的解法,利用充分条件和必要条件的定义即可得到结论.

解答 解:由2x2-7x+3≤0得$\frac{1}{2}$≤x≤3,即p:$\frac{1}{2}$≤x≤3,
由x2-(2a+1)x+a(a+1)≤0得:(x-a)(x-a-1)≤0,
即a≤x≤a+1,即q:a≤x≤a+1,
若p是q的必要不充分条件,
则$\left\{\begin{array}{l}{a≥\frac{1}{2}}\\{a+1≤3}\end{array}\right.$(“=“不同时成立),
解得:$\frac{1}{2}$<a≤2或$\frac{1}{2}$≤a<2.

点评 本题主要考查充分条件和必要条件的应用,利用不等式的解法求出不等式的解是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},则集合B中的元素个数为(  )
A.9B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),动点M到点F2的距离是2$\sqrt{6}$,线段MF1的中垂线交MF2于点P.
(I)当点M变化时,求动点P的轨迹G的方程;(Ⅱ)过点(2,0)作直线l与轨迹G交于A,B两点,O是坐标原点,设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是△ABC所在平面内一点,$\overrightarrow{PB}+\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{O}$,则S△ABC:S△PBC=(  )
A.2:1B.4:1C.8:1D.16:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各式正确的是(  )
A.1.70.2>0.73B.lg3.4<lg2.9
C.log0.31.8<log0.32.7D.1.72>1.73

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{p}$=(2cosx,sinx),$\overrightarrow{q}$=cosx,-2cosx),函数f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$-a(a∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,函数f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:矩形A1ABB1,且AB=2AA1,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形A1ABB1沿着直线C1C折成一个60°的二面角,如图所示.

(Ⅰ)求证:AB1⊥A1D;
(Ⅱ)求AB1与平面A1B1D所成角的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$=-1上,且m,n>0,则3m+n的最小值16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱锥O-ABCD的体积为8$\sqrt{3}$,则R=4.

查看答案和解析>>

同步练习册答案