分析 由题意求出矩形的对角线的长,即截面圆的直径,根据棱锥的体积计算出球心距,进而求出球的半径.
解答 解:由题可知矩形ABCD所在截面圆的半径即为ABCD的对角线长度的一半,
∵AB=6,BC=2$\sqrt{3}$,
∴r=$\frac{\sqrt{36+12}}{2}$=2$\sqrt{3}$,
由矩形ABCD的面积S=AB•BC=12$\sqrt{3}$,
则O到平面ABCD的距离为h满足:$\frac{1}{3}×12\sqrt{3}h$=8$\sqrt{3}$,
解得h=2,
故球的半径R=$\sqrt{{r}^{2}+{h}^{2}}$=4,
故答案为:4.
点评 本题是基础题,考查球内几何体的体积的计算,考查计算能力,空间想象能力,常考题型.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{6}$) | C. | ($\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{3}$) | D. | ($\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 推理形式错误 | B. | 小前提错误 | C. | 大前提错误 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 26 | C. | 32 | D. | 20+$\frac{25}{4}\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 模型1的相关指数 R=0.21 | B. | 模型2的相关指数R=0.80 | ||
| C. | 模型1的相关指数R=0.50 | D. | 模型1的相关指数R=0.98 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{x^2}{16}$-$\frac{y^2}{25}$=1 | C. | $\frac{y^2}{25}$-$\frac{x^2}{16}$=1 | D. | $\frac{y^2}{16}$-$\frac{x^2}{25}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com