精英家教网 > 高中数学 > 题目详情
4.已知OABC是四面体,M、N分别是OA,BC的中点,点G在MN上且$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$,若$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则(x,y,z)为(  )
A.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{6}$)C.($\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{3}$)D.($\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$)

分析 M、N分别是OA,BC的中点,点G在MN上且$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$,可得$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\frac{2}{3}$$(\overrightarrow{ON}-\overrightarrow{OM})$=$\frac{1}{3}\overrightarrow{OM}$+$\frac{2}{3}\overrightarrow{ON}$,$\overrightarrow{OM}$=$\frac{1}{2}\overrightarrow{OA}$,$\overrightarrow{ON}$=$\frac{1}{2}$$(\overrightarrow{OB}+\overrightarrow{OC})$,代入化简即可得出.

解答 解:∵M、N分别是OA,BC的中点,点G在MN上且$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$,
∴$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\frac{2}{3}$$(\overrightarrow{ON}-\overrightarrow{OM})$=$\frac{1}{3}\overrightarrow{OM}$+$\frac{2}{3}\overrightarrow{ON}$,$\overrightarrow{OM}$=$\frac{1}{2}\overrightarrow{OA}$,$\overrightarrow{ON}$=$\frac{1}{2}$$(\overrightarrow{OB}+\overrightarrow{OC})$,
∴$\overrightarrow{OG}$=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,
若$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则(x,y,z)=$(\frac{1}{6},\frac{1}{3},\frac{1}{3})$.
故选:D.

点评 本题考查了向量共线定理、平面向量基本定理、向量三角形法则、空间向量基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),动点M到点F2的距离是2$\sqrt{6}$,线段MF1的中垂线交MF2于点P.
(I)当点M变化时,求动点P的轨迹G的方程;(Ⅱ)过点(2,0)作直线l与轨迹G交于A,B两点,O是坐标原点,设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:矩形A1ABB1,且AB=2AA1,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形A1ABB1沿着直线C1C折成一个60°的二面角,如图所示.

(Ⅰ)求证:AB1⊥A1D;
(Ⅱ)求AB1与平面A1B1D所成角的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$=-1上,且m,n>0,则3m+n的最小值16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若b=4,c=1,A=2B,则sinA=(  )
A.$\frac{{\sqrt{55}}}{8}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(1)若x=$\frac{1}{e}$是函数f(x)的一个极值点,求a的值;
(2)若过原点所作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)设g(x)=f(x)+ex-1,当x≥1时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}\right.$(参数t∈R),圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(参数θ∈[0,2π)),则圆C的圆心坐标为(0,2),圆心到直线l的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱锥O-ABCD的体积为8$\sqrt{3}$,则R=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求满足下列条件的直线方程
(1)过点P(-1,3)且平行于直线x-2y+3=0
(2)点A(1,2),B(3,1),则线段AB的垂直平分线的方程.

查看答案和解析>>

同步练习册答案