精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(1)若x=$\frac{1}{e}$是函数f(x)的一个极值点,求a的值;
(2)若过原点所作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)设g(x)=f(x)+ex-1,当x≥1时,g(x)≥1恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,根据x=$\frac{1}{e}$是函数f(x)的一个极值点,得到e-a=0,求出a的值即可;
(2)求出切线l的方程,得到a═$\frac{1}{{x}_{1}}$-$\frac{1}{e}$,且lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0,令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$,根据函数的单调性证明即可;
(3)先求出g(x)的导数,得到g′(x)在[1,+∞)单调递增,再通过讨论a的范围,结合函数的单调性从而得到答案.

解答 解:(1)∵f(x)=lnx-a(x-1),∴f′(x)=$\frac{1}{x}$-a,
∵x=$\frac{1}{e}$是函数f(x)的一个极值点,
∴f′($\frac{1}{e}$)=e-a=0,解得:a=e,
经检验,a=e符合题意;
(2)∵过原点所作曲线y=f(x)的切线l与直线y=-ex+1垂直,
∴切线l的斜率为k=$\frac{1}{e}$,方程是y=$\frac{1}{e}$x,
设l与y=f(x)的切点为(x1,y1),
∴$\left\{\begin{array}{l}{f′{(x}_{1})=\frac{1}{e}}\\{{y}_{1}=l{nx}_{1}-a{(x}_{1}-1)}\\{{y}_{1}={\frac{1}{e}x}_{1}}\end{array}\right.$,
∴a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$,且lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0,
令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$,则m′(x)=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$,
∴m(x)在(0,1)递减,在(1,+∞)递增,
若x1∈(0,1),∵m($\frac{1}{e}$)=-2+e-$\frac{1}{e}$>0,m(1)=-$\frac{1}{e}$<0,
∴x1∈($\frac{1}{e}$,1),
而a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$在x1∈($\frac{1}{e}$,1)递减,
∴$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$,
若x1∈(1,+∞),∵m(x)在(1,+∞)递增,且m(e)=0,则x1=e,
∴a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0(舍),
(3)∵g(x)=f(x)+ex-1=lnx-a(x-1)+ex-1
∴g′(x)=$\frac{1}{x}$-a+ex-1
①0<a≤2时,∵ex-1≥x,
∴g′(x)=$\frac{1}{x}$-a+ex-1,≥$\frac{1}{x}$+x-a≥2-a≥0,
∴g(x)在[1,+∞)单调递增,g(x)≥g(1)=1恒成立,符合题意;
②当a>2时,∵g″(x)=$\frac{{{e}^{x-1}x}^{2}-1}{{x}^{2}}$≥0,
∴g′(x)在[1,+∞)递增,
∵g′(1)=2-a<0,
易知存在x0∈[1,+∞),使得g′(x0)=0,
∴g(x)在(1,x0)单调递减,在(x0,+∞)单调递增,
∴x∈(1,x0)时,g(x)<g(1)=1,
∴g(x)≥1不恒成立,不符合题意;
综上可知所求实数a的范围是(-∞,2].

点评 本题考查了函数的单调性、极值问题,考查了导数的应用,考查曲线的切线方程问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,一架飞机以326km/h的速度,沿北偏东75°的航向从城市A出发向城市B飞行,18min以后,飞机由于天气原因按命令改飞另一个城市C,问收到命令时飞机应该沿什么航向飞行,此时离城市C的距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若存在正实数y,使得$\frac{xy}{y-x}$=$\frac{1}{5x+4y}$,则实数x的最大值为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题p:任意x>0,都有x2+x≥0,则非p为(  )
A.存在x>0,使得x2+x≥0B.存在x>0,使得x2+x<0
C.任意x≤0,都有x2+x<0D.任意x≤0,都有x2+x≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知OABC是四面体,M、N分别是OA,BC的中点,点G在MN上且$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$,若$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则(x,y,z)为(  )
A.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{6}$)C.($\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{3}$)D.($\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列计算曲线y=cosx(0≤x≤$\frac{3π}{2}$)与坐标轴围成的面积:
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,(2)3${∫}_{0}^{\frac{π}{2}}$cosxdx,(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,(4)面积为3.
用的方法或结果正确的是(2)、(3)、(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下面是用三段论形式写出的演绎推理,其结论错误的原因是
因为对数函数y=logax(a>0且a≠1)在(0,+∞)上是增函数,…大前提
而y=log${\;}_{\frac{1}{2}}$x是对数函数,…小前提
所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函数,…结论.
A.推理形式错误B.小前提错误C.大前提错误D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某几何体的三视图如图所示,则该几何体的表面积为(  ) 
A.16B.26C.32D.20+$\frac{25}{4}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=lg(2sinx-1)的定义域为($\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ),k∈Z.

查看答案和解析>>

同步练习册答案