精英家教网 > 高中数学 > 题目详情
14.下列计算曲线y=cosx(0≤x≤$\frac{3π}{2}$)与坐标轴围成的面积:
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,(2)3${∫}_{0}^{\frac{π}{2}}$cosxdx,(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,(4)面积为3.
用的方法或结果正确的是(2)、(3)、(4).

分析 根据积分和曲边图象的面积关系分别进行判断即可.

解答 解:∵当0≤x≤$\frac{π}{2}$,时,cosx≥0,当$\frac{π}{2}$≤x≤$\frac{3π}{2}$时,cosx≤0,
∴曲线y=cosx(0≤x≤$\frac{3π}{2}$)与坐标轴围成的面积S=${∫}_{0}^{\frac{π}{2}}$cosxdx-${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,
(1)${∫}_{0}^{\frac{3π}{2}}$cosxdx,错误,
(2)函数在0≤x≤$\frac{π}{2}$,$\frac{π}{2}$≤x≤π,π≤x≤$\frac{3π}{2}$三段的面积相同,
则S=3${∫}_{0}^{\frac{π}{2}}$cosxdx,正确
(3)${∫}_{0}^{\frac{3π}{2}}$|cosx|dx,正确
(4)面积为S=3${∫}_{0}^{\frac{π}{2}}$cosxdx=3sinx|${\;}_{0}^{\frac{π}{2}}$=3(sin$\frac{π}{2}$-sin0)=3.
正确,
故答案为:(2)、(3)、(4);

点评 本题主要考查积分的几何意义,当f(x)≥0时,积分的几何意义为对应曲边图象的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设y=f(t)是某港口水的深度关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0至24时记录的时间t与水深y的关系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.
根据上述数据,函数y=f(t)的解析式为$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果两组数x1,x2,…,xn和y1,y2,…,yn的平均数分别为$\overline{x}$和$\overline{y}$,标准差分别为s1和s2,那么合为一组数x1,x2,…,xn,y1,y2,…,yn后的平均数和标准差分别是(  )
A.$\overline{x}$+$\overline{y}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$B.$\overline{x}$+$\overline{y}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$
C.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$D.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.3e,π3,3π,e3这四个数中最大的数是3π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(1)若x=$\frac{1}{e}$是函数f(x)的一个极值点,求a的值;
(2)若过原点所作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)设g(x)=f(x)+ex-1,当x≥1时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知几何体O-ABCD的底面ABCD是边长为$\sqrt{3}$的正的方形,且该几何体体积的最大值为$\frac{{3\sqrt{2}}}{2}$,则该几何体外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ex-ax2,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)证明:当x>0时,ex+(1-e)x-xlnx-1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知⊙O的方程为x2+y2=10.
(1)求直线:x=1被⊙O截的弦AB的长;
(2)求过点(-3,1)且与⊙O相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点A(m,0)与点B(2,m)分别在直线x+y-1=0的两侧,则m的取值范围为-1<m<1.

查看答案和解析>>

同步练习册答案